ProPG: New Residential Development - An overview
Launch Event, Birmingham, 22nd June 2017
Colin J Grimwood, Director, CJGEM
E: cjgem@btinternet.com
WORKING GROUP MEMBERS

Main WG (in alphabetical order!)

- Colin Cobbing
- Dani Fiumicelli, WG Chair
- Richard Greer
- Colin Grimwood, Main Author
- Steve Mitchell
- Robert Osborne, WG Secretary
- Graham Parry
- Howard Price
- Somayya Yaqub

Others: Ed Clarke, Chris Hurst, Matthew Hyden, Jack Harvie-Clark

- The membership of IOA, ANC & CIEH
TIMELINE (1)

• Initial idea (in response to NPPF, PPG-N, & cancellation of PPG24) (2012/13)
• Working Group formed, initial meetings, sponsorship and first draft (during 2014)
• ProPG emerging ideas presented to ANC Conference (June 2015)
• Additional Working Group meetings to steer Consultation Draft (late 2015)
• ProPG Consultation Draft written and published online (Jan 2016)
• Formal consultation with sponsor body membership (to end March 2016)
• Attempts to involve government departments & other interested parties (during 2016)
• 249 individual responses, and 1,441 detailed comments received (by end March 2016)
• … feedback from the consultation
Q1 What category best describes your role

- Acoustic consultant: 57.03% (142 responses)
- Acoustician (non-consultant): 3.21% (8 responses)
- Architect: 0.00% (0 responses)
- Developer: 0.40% (1 response)
- Environmental Health Officer: 28.92% (72 responses)
- House builder: 0.80% (2 responses)
- Local Authority (not EHO or Planner): 4.02% (10 responses)
- Other consultants (eg surveyors, engineers): 1.20% (3 responses)
- Planner: 1.61% (4 responses)
- Other (please specify): 2.81% (7 responses)

Total: 249
Q2 Do you support the initiative taken by the ANC/CIEH/IOA to jointly produce Professional Practice Guidance on Planning & Noise?

Answered: 249 Skipped: 0

<table>
<thead>
<tr>
<th>Answer Choices</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>94.78%</td>
</tr>
<tr>
<td>No</td>
<td>5.22%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Q5 Do you agree with the recommended overall approach

Answered: 182 Skipped: 67

Answer Choices	Responses
Yes | 50.00% | 91
No | 4.95% | 9
Some of it | 45.05% | 82
Total | 182
Q4 Is it helpful to have a 2-stage process to better inform design and pre-application discussions between applicant and planning authority?

Answered: 181 Skipped: 68

<table>
<thead>
<tr>
<th>Answer Choices</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>86.19%</td>
</tr>
<tr>
<td>No</td>
<td>13.81%</td>
</tr>
</tbody>
</table>

Total 181
Q6 Please indicate the importance you attach to the different stages and elements

Answered: 172 Skipped: 77

<table>
<thead>
<tr>
<th>Importance</th>
<th>Stage 1 An Initial Site...</th>
<th>Stage 2 Element #1...</th>
<th>Stage 2 Element #2...</th>
<th>Stage 2 Element #3 A...</th>
<th>Stage 2 Element #4...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not important</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>Maybe useful</td>
<td>Light blue</td>
<td>Light blue</td>
<td>Light blue</td>
<td>Light blue</td>
<td>Light blue</td>
</tr>
<tr>
<td>Helpful</td>
<td>Orange</td>
<td>Orange</td>
<td>Orange</td>
<td>Orange</td>
<td>Orange</td>
</tr>
<tr>
<td>Important</td>
<td>Dark grey</td>
<td>Dark grey</td>
<td>Dark grey</td>
<td>Dark grey</td>
<td>Dark grey</td>
</tr>
<tr>
<td>Very important</td>
<td>Dark blue</td>
<td>Dark blue</td>
<td>Dark blue</td>
<td>Dark blue</td>
<td>Dark blue</td>
</tr>
</tbody>
</table>
Q23 Should any internal noise level guidelines also include consideration of the number/frequency/magnitude of noise events?

Q24 If so, is the proposed approach to considering noise events using LAFmax likely to be useful for the decision maker?

Answered: 145 Skipped: 104

Q33 Do you agree with the approach to openable windows and ventilation that is included in the ADS requirements (Section 2.4 d)

Answered: 140 Skipped: 109
TIMELINE (2)

- Working Group formed, initial meetings, discussions and first draft (during 2014)
- ProPG emerging ideas presented to ANC Conference (June 2015)
- Additional Working Group meetings to steer Consultation Draft (Late 2015)
- ProPG Consultation Draft written and published online (Jan 2016)
- Formal consultation with sponsor body membership (to end March 2016)
- Attempts to involve government departments & other interested parties (during 2016)
- 249 individual responses, and 1,441 detailed comments received (by end March 2016)

- Presentations and discussions with IOA, CIEH, ANC, RTPI members (Jan - Dec 2016)
- Further Working Group meetings to consider responses & revise Draft (during 2016)
- Revised ProPG + new Appendix + two Supplementary Documents produced (Jan 2017)
- Comments from IOA Council, ANC Board (and AVOG) (February/March 2017)
- Approved & endorsed by IOA Council, ANC Board & CIEH (March/April 2017)
- Liaison with Ingenious Design to produce final version (May 2017)
- Launch events – 22 June 2017, Birmingham
- Next steps … Training/Workshops? Reach out to others? Design Award? Noise Council?
FINAL STRUCTURE (1)

ProPG: New Residential Development

- Acknowledgements
- Foreword
- 1. Introduction
- 2. Recommended approach
- 3. Recommendations to the decision maker
- 4. Further specialist assistance
- Appendix A: Dealing with noise events
FINAL STRUCTURE (2)

- Supplementary Document 1: Planning & noise policy and guidance
- Supplementary Document 2: Good Acoustic Design
OBJECTIVES & CONTEXT (1)

Provide a clear framework for the consideration of noise and new residential development within the planning process to help enable the speedier delivery of new homes

• Develop practical guidance seeking to assist, and increase the consistency of plan making and decision taking
• Assist delivery of sustainable development
• Complement Government planning and noise policy & guidance

"LPAs should seek opportunities to protect, improve and enhance the environment"
OBJECTIVES & CONTEXT (2)

Provide a clear framework for the consideration of noise and new residential development within the planning process to help enable the speedier delivery of new homes

• Encourage good acoustic design process for all sites
• Encourage consideration of noise issues at earliest possible stage
• Proportionate approach starting with external noise risk assessment
• Facilitate accelerated decision making for lower risk sites
• Limited scope - new residential development & existing transport sources
 (may include industrial/commercial noise if present but “not dominant”)

“Good acoustic design is about more than the numbers. It is a holistic design process…”
FOREWORD

“LPAs should seek opportunities to protect, improve and enhance the environment”

“This Professional Practice Guidance does not constitute an official government code of practice and neither replaces nor provides an authoritative interpretation of the law or government policy on which users should take their own advice as appropriate.

“Good acoustic design is about more than the numbers. It is a holistic design process…”

“it is imperative that acoustic design is considered at an early stage of the development process”

Planning should …
...always seek to secure high quality design
THE RECOMMENDED APPROACH

The recommended approach has two stages:
Stage 1. Initial Site Risk Assessment
Stage 2. Full Assessment, four elements

2.1 Demonstrating application of a ‘Good Acoustic Design Process’
2.2 Observing ‘Internal Noise Level Guidelines’
2.3 Undertaking an ‘External Amenity Area Noise Assessment’
2.4 Consideration of ‘Other Relevant Issues’

There are then four possible recommendations to the decision maker:

No objection on noise grounds
A. Grant without noise conditions
B. Grant with noise conditions

Objection on noise grounds
C. Avoid (significant adverse effects)*
D. Prevent (unacceptable adverse effects)

* The use of suitable planning conditions may still be necessary
THE RECOMMENDED APPROACH

The recommended approach has two stages:
Stage 1. Initial Site Risk Assessment
Stage 2. Full Assessment, four elements

2.1 Demonstrating application of a ‘Good Acoustic Design Process’
2.2 Observing ‘Internal Noise Level Guidelines’
2.3 Undertaking an ‘External Amenity Area Noise Assessment’
2.4 Consideration of ‘Other Relevant Issues’

The decision is informed by the delivery of an Acoustic Design Statement:
• Not normally necessary for negligible risk sites
• Basic information for sites assessed as low risk
• More detail required for sites assessed as medium or high risk
STAGE 1: INITIAL SITE RISK ASSESSMENT

Negligible Risk Low Risk Medium Risk High Risk

“increasing risk indicating the increasing importance of good acoustic design”
INITIAL SITE NOISE RISK ASSESSMENT

NOISE RISK ASSESSMENT

<table>
<thead>
<tr>
<th>Level</th>
<th>Indicative Daytime Noise Levels</th>
<th>Indicative Night-time Noise Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>L_{day} = 70 dB</td>
<td>L_{night} = 60 dB</td>
</tr>
<tr>
<td>Medium</td>
<td>L_{day} = 65 dB</td>
<td>L_{night} = 55 dB</td>
</tr>
<tr>
<td>Low</td>
<td>L_{day} = 60 dB</td>
<td>L_{night} = 50 dB</td>
</tr>
<tr>
<td>Negligible</td>
<td>L_{day} = 55 dB</td>
<td>L_{night} = 45 dB</td>
</tr>
<tr>
<td>No adverse effect</td>
<td>L_{day} = 50 dB</td>
<td>L_{night} = 40 dB</td>
</tr>
</tbody>
</table>

Stage 1: Initial Site Risk Assessment (measured/predicted, empty site, pre-mitigation)

<table>
<thead>
<tr>
<th>Noise Risk Category</th>
<th>Potential Effect if unmitigated</th>
<th>Pre-Planning Application Advice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible (L_{day} < 50 dB, L_{night} < 40 dB)</td>
<td>May be noticeable but no adverse effect on health and quality of life</td>
<td>In this category, the development is likely to be acceptable from a noise perspective, nevertheless a good acoustic design process is encouraged to improve the existing environment and to safeguard against possible future deterioration and to protect any designated tranquil areas. A noise assessment may be required to demonstrate no adverse impact from noise. Application need not normally be delayed on noise grounds.</td>
</tr>
<tr>
<td>Low (L_{day} = 50-60 dB, L_{night} = 40-50 dB)</td>
<td>Adverse effect on health and quality of life</td>
<td>In this category the development may be refused unless a good acoustic design process is followed and is demonstrated via a Level 1 Acoustic Design Statement which confirms how the adverse impacts of noise on the new development will be mitigated and minimised and that a significant adverse noise impact will not arise in the finished development. Planning conditions and other measures to control noise will normally be required.</td>
</tr>
<tr>
<td>Medium (L_{day} = 55-65 dB, L_{night} = 50-65 dB)</td>
<td>Significant adverse effect on health and quality of life</td>
<td></td>
</tr>
<tr>
<td>High (L_{day} = 65 dB, L_{night} = 60 dB)</td>
<td>Unacceptable adverse effect on health and quality of life</td>
<td>In this category the development is very likely to be refused on noise grounds. Even if a good acoustic design process is followed and is demonstrated via a Level 2 Acoustic Design Statement, Applicants are advised to seek expert advice on possible mitigation measures. Advice on the circumstances when the refusal of new housing on noise grounds should normally be anticipated is included on the ProPG.</td>
</tr>
</tbody>
</table>

Figure 1 Notes:
- Indicative noise levels should be assessed without inclusion of the acoustic effect of any scheme specific noise mitigation measures.
- Indicative noise levels are the combined free-field noise level from all sources of transport noise and may also include industrial/commercial noise where this is present but is “not dominant”.
- L_{day} for site is 60 dB for daytime 0700 – 2300, L_{night} is for night-time 2300 – 0700.
- An indication that there may be more than 10 noise events at night (2300 – 0700) with L_{max} > 60 dB means the site should not be regarded as negligible risk.

Figure 1. Stage 1 – Initial Site Noise Risk Assessment

ProPG Planning & Noise: New Residential Development • May 2017
High noise levels indicate that there is an increased risk that development may be refused on noise grounds. This risk may be reduced by following a good acoustic design process that is demonstrated in a detailed ADS. Applicants are strongly advised to seek expert advice.

As noise levels increase, the site is likely to be less suitable from a noise perspective and any subsequent application may be refused unless a good acoustic design process is followed and is demonstrated in an ADS which confirms how the adverse impacts of noise will be mitigated and minimised, and which clearly demonstrate that a significant adverse noise impact will be avoided in the finished development.

At low noise levels, the site is likely to be acceptable from a noise perspective provided that a good acoustic design process is followed and is demonstrated in an ADS which confirms how the adverse impacts of noise will be mitigated and minimised in the finished development.

These noise levels indicate that the development site is likely to be acceptable from a noise perspective, and the application need not normally be delayed on noise grounds.

2.12 It is important that the assessment of noise risk at a proposed residential development site is not the basis for the eventual recommendation to the decision maker. The recommended approach is intended to give the developer, the noise practitioner, and the decision maker an early indication of the likely initial suitability of the site for new residential development from a noise perspective and the extent of the acoustic issues that would be faced. Thus,
STAGE 2: FULL ASSESSMENT

ELEMENT 1 GOOD ACOUSTIC DESIGN

ELEMENT 2
Internal Noise Level Guidelines

ELEMENT 3
External Amenity Area Noise Assessment

ELEMENT 4
Assessment of Other Relevant Issues

ACOUSTIC DESIGN STATEMENT

RECOMMENDATION TO DECISION MAKER
A. Grant without noise conditions
B. Grant with noise conditions
C. Avoid (significant adverse effects)
D. Prevent (unacceptable adverse effects)
STAGE 2: THE FOUR KEY ELEMENTS

<table>
<thead>
<tr>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 2: Element 1 – Good Acoustic Design Process</td>
</tr>
<tr>
<td>Stage 2: Element 2 – Internal Noise Level Guidelines</td>
</tr>
<tr>
<td>Stage 2: Element 3 – External Amenity Area Noise Assessment</td>
</tr>
<tr>
<td>Stage 2: Element 4 – Assessment of Other Relevant Issues</td>
</tr>
</tbody>
</table>
2-1 GOOD ACOUSTIC DESIGN PROCESS

THE PLANNING APPLICATION MUST (MAY BE ITERATIVE PROCESS):

- Check the feasibility of relocating, or reducing noise levels from relevant sources.
- Consider options for planning the site or building layout.
- Consider the orientation of proposed building(s).
- Select construction types and methods for meeting building performance requirements.
- Examine the effects of noise control measures on ventilation, fire regulation, health and safety, cost, CDM (construction, design and management) etc.
- Assess the viability of alternative solutions.
- Assess external amenity area noise.

2.25 Evidence that a good acoustic design process has been followed, suitably cross referenced to relevant features of the submitted application, should be included in a supporting Acoustic Design Statement (ADS) (see below).

“it is imperative that acoustic design is considered at an early stage of the development process”
2-1 GOOD ACOUSTIC DESIGN PROCESS

Acoustic Design Statement (ADS)

An ADS for new housing should be proportionate to the scale of development and the extent of noise risk at the development site. An ADS should typically address the following issues:

<table>
<thead>
<tr>
<th>TYPICAL ISSUES FOR LOW NOISE RISK SITES</th>
<th>ADDITIONAL ISSUES FOR MEDIUM/HIGH NOISE RISK SITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevant noise sources identified</td>
<td>Multiple source contributions carefully quantified</td>
</tr>
<tr>
<td>Assess extent of noise risk for unmitigated site (current and foreseeable future, 15 years ahead)</td>
<td>Greater coverage across the site (all buildings, all relevant heights)</td>
</tr>
<tr>
<td>Opportunities to mitigate the noise source within the site</td>
<td>Opportunities to mitigate the noise source outside owned land (physical mitigation, operational management)</td>
</tr>
<tr>
<td>Maximise separation</td>
<td>Existing topographical advantages Change site level</td>
</tr>
<tr>
<td>Noise barriers – screening opportunities</td>
<td>Barriers inside and outside the site</td>
</tr>
<tr>
<td>Site layout – protecting residential units</td>
<td>Design external amenity spaces (e.g., balconies) to reduce noise entering sensitive rooms</td>
</tr>
<tr>
<td>Site layout – protecting external amenity space</td>
<td>Access to quiet open space on or off-site</td>
</tr>
<tr>
<td>Non-sensitive elements as screens</td>
<td>Non-sensitive elements designed as screens</td>
</tr>
<tr>
<td>Building layout to self-screen sensitive rooms</td>
<td>Orientation of noise sensitive rooms away from the source of noise exposure i.e. quiet facades</td>
</tr>
<tr>
<td>Building treatment to screen openings</td>
<td>Consideration of alternative acoustic options</td>
</tr>
<tr>
<td>Window location & size on affected facades</td>
<td>Innovative facade and window designs e.g. plenum windows</td>
</tr>
<tr>
<td>Ventilation – natural, from quiet facade</td>
<td>Façade insulation design</td>
</tr>
<tr>
<td>Acoustic performance of ventilation, thermal comfort</td>
<td>Complete Acoustic Design Process throughout</td>
</tr>
</tbody>
</table>

Figure 3. Typical acoustic design issues to be included in an ADS.

Acoustic Design Statement

2.69 – 2.72

2.70 An ADS should be proportionate to the scale of the development and to the degree of noise risk at the proposed development site. An ADS should not normally be necessary where the noise risk has been properly assessed as negligible during Stage 1. The level of detail provided in an ADS should increase with increasing level of risk.

ProPG Planning & Noise: New Residential Development • May 2017
2-2 INTERNAL NOISE LEVEL GUIDELINES

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>LOCATION</th>
<th>07:00 – 23:00 HRS</th>
<th>23:00 – 07:00 HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting</td>
<td>Living room</td>
<td>35 dB L_{Aeq,16 hr}</td>
<td>-</td>
</tr>
<tr>
<td>Dining</td>
<td>Dining room/area</td>
<td>40 dB L_{Aeq,16 hr}</td>
<td>-</td>
</tr>
<tr>
<td>Sleeping (daytime resting)</td>
<td>Bedroom</td>
<td>35 dB L_{Aeq,16 hr}</td>
<td>30 dB L_{Aeq,8 hr} 45 dB L_{C,Leq} (Note 6)</td>
</tr>
</tbody>
</table>

NOTE 1 The table provides recommended internal L_{Aeq} target levels for overall noise in the design of a building. These are the sum total of structure-borne and airborne noise sources. Ground-borne noise is assessed separately and is not included as part of these targets, as human response to ground-borne noise varies with many factors such as level, character, timing, occupant expectation and sensitivity.

NOTE 2 The internal L_{Aeq} target levels shown in the table are based on the existing guidelines issued by the WHO and assume normal diurnal fluctuations in external noise. In cases where local conditions do not follow a typical diurnal pattern, for example on a road serving a port with high levels of traffic at certain times of the night, an appropriate alternative period, e.g. 1 hour, may be used, but the level should be selected to ensure consistency with the internal L_{Aeq} target levels recommended in the table.

NOTE 3 These internal L_{Aeq} target levels are based on annual average data and do not have to be achieved in all circumstances. For example, it is normal to exclude occasional events, such as fireworks night or New Year’s Eve.

NOTE 4 Regular individual noise events (for example, scheduled aircraft or passing trains) can cause sleep disturbance. A guideline value may be set in terms of SEL or L_{A,eq,60}, depending on the character and number of events per night. Sporadic noise events could require separate values. In most circumstances in noise-sensitive rooms at night (e.g. bedrooms) good acoustic design can be used so that individual noise events do not normally exceed 45 dB L_{A,eq,60} more than 10 times a night. However, where it is not reasonably practicable to achieve this guideline then the judgement of acceptability will depend not only on the maximum noise levels but also on factors such as the source, number, distribution, predictability and regularity of noise events (see Appendix A).

NOTE 5 Designing the site layout and the dwellings so that the internal target levels can be achieved with open windows in as many properties as possible demonstrates good acoustic design. Where it is not possible to meet internal target levels with windows open, internal noise levels can be assessed with windows closed, however any façade openings used to provide whole dwelling ventilation (e.g. trickle ventilators) should be assessed in the “open” position and, in this scenario, the internal L_{Aeq} target levels should not normally be exceeded, subject to the further advice in Note 7.

NOTE 6 Attention is drawn to the requirements of the Building Regulations.

NOTE 7 Where development is considered necessary or desirable, despite external noise levels above WHO guidelines, the internal L_{Aeq} target levels may be relaxed by up to 5 dB and reasonable internal conditions are still achieved. The more often internal L_{Aeq} levels start to exceed the internal L_{Aeq} target levels by more than 5 dB, the more that most people are likely to regard them as “unreasonable”. Where such exceedances are predicted, applicants should be required to show how the relevant number of rooms affected has been kept to a minimum. Once internal L_{Aeq} levels exceed the target levels by more than 10 dB, they are highly likely to be regarded as “unacceptable” by most people, particularly if such levels occur more than occasionally. Every effort should be made to avoid relevant rooms experiencing “unacceptable” noise levels at all and where such levels are likely to occur frequently, the development should be prevented in its proposed form (see Section 3.D).

Figure 2. ProPG Internal Noise Level Guidelines (additions to BS8233:2014 shown in blue)
NOTE 4 Regular individual noise events (for example, scheduled aircraft or passing trains) can cause sleep disturbance. A guideline value may be set in terms of SEL or \(L_{\text{max,F}} \), depending on the character and number of events per night. Sporadic noise events could require separate values. In most circumstances in noise-sensitive rooms at night (e.g. bedrooms) good acoustic design can be used so that individual noise events do not normally exceed 45dB \(L_{\text{max,F}} \) more than 10 times a night. However, where it is not reasonably practicable to achieve this guideline then the judgement of acceptability will depend not only on the maximum noise levels but also on factors such as the source, number, distribution, predictability and regularity of noise events (see Appendix A).

NOTE 5 Designing the site layout and the dwellings so that the internal target levels can be achieved with open windows in as many properties as possible demonstrates good acoustic design. Where it is not possible to meet internal target levels with windows open, internal noise levels can be assessed with windows closed, however any façade openings used to provide whole dwelling ventilation (e.g. trickle ventilators) should be assessed in the “open” position and, in this scenario, the internal \(L_{\text{Aeq}} \) target levels should not normally be exceeded, subject to the further advice in Note 7.

\(L_{\text{max,F}} \) depending on the character and number of events per night. Sporadic noise events could require separate values. For a reasonable standard in noise sensitive rooms at night (e.g. bedrooms) individual noise events should not normally exceed 45dB \(L_{\text{AFmax}} \) more than 10 times a night.

NOTE 5 If relying on closed windows to meet the guide values, there needs to be appropriate alternative ventilation that does not compromise the façade insulation or the resulting noise level. If applicable, any room should have adequate ventilation (e.g. trickle ventilators should be open) during assessment.
2-2 INTERNAL NOISE LEVEL GUIDELINES

NOTE 7 Where development is considered necessary or desirable, despite external noise levels above WHO guidelines, the internal L_{Aeq} target levels may be relaxed by up to 5 dB and reasonable internal conditions still achieved. The more often internal L_{Aeq} levels start to exceed the internal L_{Aeq} target levels by more than 5 dB, the more that most people are likely to regard them as “unreasonable”. Where such exceedances are predicted, applicants should be required to show how the relevant number of rooms affected has been kept to a minimum. Once internal L_{Aeq} levels exceed the target levels by more than 10 dB, they are highly likely to be regarded as “unacceptable” by most people, particularly if such levels occur more than occasionally. Every effort should be made to avoid relevant rooms experiencing “unacceptable” noise levels at all and where such levels are likely to occur frequently, the development should be prevented in its proposed form (see Section 3.D).

NOTE 7 Where development is considered necessary or desirable, despite external noise levels above WHO guidelines, the internal L_{Aeq} target levels may be relaxed by up to 5 dB and reasonable internal conditions still achieved. Internal L_{Aeq} levels that exceed these guidelines by 5 dB or more are unreasonable. Internal L_{Aeq} levels that exceed these guidelines by 10 dB or more are unacceptable.

NOTE 8 Levels much lower than the internal L_{Aeq} guideline values should only be accepted with care in attached dwellings.
2-3 EXTERNAL AMENITY AREA NOISE ASSESSMENT

Element 3 – External Amenity Area Noise Assessment

3(i) “If external amenity spaces are an intrinsic part of the overall design, the acoustic environment of those spaces should be considered so that they can be enjoyed as intended”.

3(ii) “The acoustic environment of external amenity areas that are an intrinsic part of the overall design should always be assessed and noise levels should ideally not be above the range 50 – 55 dB $L_{A_{eq,16h}}$.”

3(iii) “These guideline values may not be achievable in all circumstances where development might be desirable. In such a situation, development should be designed to achieve the lowest practicable noise levels in these external amenity spaces.”

3(iv) Whether or not external amenity spaces are an intrinsic part of the overall design, consideration of the need to provide access to a quiet or relatively quiet external amenity space forms part of a good acoustic design process.

3(v) Where, despite following a good acoustic design process, significant adverse noise impacts remain on any private external amenity space (e.g. garden or balcony) then that impact may be partially off-set if the residents are provided, through the design of the development or the planning process, with access to:

- a relatively quiet facade (containing openable windows to habitable rooms) or a relatively quiet externally ventilated space (i.e. an enclosed balcony) as part of their dwelling; and/or
- a relatively quiet alternative or additional external amenity space for sole use by a household, (e.g. a garden, roof garden or large open balcony in a different, protected, location); and/or
- a relatively quiet, protected, nearby, external amenity space for sole use by a limited group of residents as part of the amenity of their dwellings; and/or
- a relatively quiet, protected, publicly accessible, external amenity space (e.g. a public park or a local green space designated because of its tranquillity) that is nearby (e.g. within a 5 minutes walking distance). The local planning authority could link such provision to the definition and management of Quiet Areas under the Environmental Noise Regulations.
2.48 It is notable that both documents require a decision to be made regarding whether or not an external amenity area (or amenity space) is intrinsic to the required design for acoustic, or for other, reasons. However, the advice in BS8233:2014 states that the resulting noise levels outside are never a reason for refusal as long as levels are designed to be as low as practicable. Whereas, to comply with policy guidance any amenity space must have an acoustic environment so that it can be enjoyed as intended.

2.49 Developers are particularly encouraged to enter into pre-application discussions with the LPA where noise levels in proposed amenity spaces are likely to be above 55 dBA_{eq} during a reasonably foreseeable typical worst case day. In particular, a professional judgement should be made on the need to provide access to a quiet or relatively quiet external amenity space as an intrinsic part of a good acoustic design process. This judgement will partly depend on the type of residential development and the intended occupancy, which, in turn, may need to be secured by condition.

2.51 LPAs will be best placed to provide guidance on the meaning of “relatively quiet” in any given location as this concept will inherently vary from one place to another. In addition, it may not be necessary for the whole of an external amenity area to be relatively quiet, nor for it to be relatively quiet all of the time.
2-4 ASSESSMENT OF OTHER RELEVANT ISSUES

Stage 2: Element 4 – Assessment of Other Relevant Issues

4(i) compliance with relevant national and local policy

4(ii) magnitude and extent of compliance with ProPG

4(iii) likely occupants of the development

4(iv) acoustic design v unintended adverse consequences

4(v) acoustic design v wider planning objectives

(i) acoustic factors (follows PPG-Noise): source and absolute level of noise; time of day noise occurs; number, frequency and pattern of events; features such as tonality, impulsiveness; cumulative impacts etc.

(ii) non-acoustic factors (expands PPG-Noise): planned character of the area (including plans for the acoustic environment), any need to keep windows closed, potential effect on an existing business etc.

(iii) magnitude and extent to which internal guidelines are exceeded and/or external amenity area assessment is unfavourable

(iv) likely occupancy of the development / likelihood of change of occupancy type in future / sensitivity of users (e.g. differing acoustic requirements of families with young children, students and the elderly)

(v) whether acoustic design measures give rise to other adverse consequences for the building, occupants or the nearby environment (e.g. sealed up balconies, poor ventilation, roadside barriers that remove views or that don’t allow you to cross the road etc.)

(vi) whether acoustic design measures are in line with wider planning objectives for an area (e.g. encouragement of walking, outdoor recreation and lifestyle, the potential need for some residential to face noisy streets in urban areas to provide ‘active facades’ and to overlook public footpaths etc. to ensure ‘safe by design’ etc.)
2-4 ASSESSMENT OF OTHER RELEVANT ISSUES

“Other relevant issues” to be considered when making a judgement about the noise aspects of a particular planning proposal for new residential development:

(i) compliance with relevant national and local policy – e.g. NPSE, NPPF, Local Plans (see Supplementary Document 1) result in variation & flexibility in implementation at local level. In addition, national guidance in PPG-Noise already mentions various acoustic and non-acoustic factors that should be considered (2.58 – 2.63).

(ii) magnitude and extent of compliance with ProPG – need to exercise discretion regarding extent to which internal noise guidelines are exceeded and/or external amenity area assessment is unfavourable (2.64 – 2.65)

(iii) likely occupants of the development – certain occupancy groups will have different acoustic requirements, in particular varying needs for access to quiet external space (2.66)

(iv) acoustic design v unintended adverse consequences – e.g. roadside barriers that remove views or don’t allow you to cross the road (2.67)

(v) acoustic design v wider planning objectives for an area – e.g. connecting occupants with the external environment for safety or QoL reasons (2.68)
Figure 4 Summary of overall ProPG approach
RECOMMENDATIONS TO THE DECISION MAKER

Recommendation - No objection on noise grounds

3A. GRANT CONSENT WITHOUT THE NEED FOR NOISE CONDITIONS
.....3.2 - 3.3
3B. GRANT CONSENT WITH SUITABLE NOISE CONDITIONS
...3.4 – 3.6

Recommendation - Objection on noise grounds

3C. RECOMMEND REFUSAL – IN ORDER TO AVOID SIGNIFICANT ADVERSE EFFECTS
.....3.9 - 3.10 “AVOID”
3D. RECOMMEND REFUSAL – IN ORDER TO PREVENT UNACCEPTABLE ADVERSE EFFECTS
...3.11 “PREVENT”
RECOMMENDATION – NO OBJECTION ON NOISE GROUNDS (A)

3A. RECOMMEND GRANT CONSENT – without the need for noise conditions

3.2 Where the ProPG Stage 1 guidance has been followed and where a potential residential development site poses a negligible risk from a noise perspective, it should be possible for the noise practitioner to expedite consideration of the planning application on noise grounds and to recommend that planning consent may be granted without the need for noise conditions.

3.3 Similarly, and irrespective of the initial site noise risk assessment, where the ProPG Stage 2 guidance has been followed, and where the submitted development proposal is supported by an ADS that adequately demonstrates good acoustic design, then it should be possible for the noise practitioner to recommend that planning consent may be granted without the need for additional noise conditions.
RECOMMENDATION – NO OBJECTION ON NOISE GROUNDS (B)

3B. RECOMMEND GRANT CONSENT – with suitable noise conditions

3.4 In some circumstances it may be necessary for the noise practitioner to recommend that planning consent may be granted subject to the inclusion of suitable noise conditions, for example to address specific acoustic design aspects of a particular site, and/or to ensure that specific acoustic design details contained in an ADS are included in the finished development.

3.5 In most circumstances it is likely that following the ProPG guidance, in particular following a good acoustic design process and producing an accompanying ADS, should reduce delays and reduce the need for noise conditions.

3.6 Supplementary Document 1 (Section 6) includes a summary of current Government guidance on the use of planning conditions and planning obligations.
RECOMMENDATION – OBJECTION ON NOISE GROUNDS (C)

3C. RECOMMEND REFUSAL – in order to AVOID significant adverse effects

3.9 Accepting there may be overwhelming reasons to the contrary, the noise practitioner should recommend that consent for a new housing development in its proposed form should be refused on noise grounds if:

(1) There is a failure to follow a good acoustic design process (as part of the broader requirement for good design set out in the NPPF); OR

(2) Internal noise levels are regarded as “unreasonable” and the applicant has not shown that this impact has been mitigated and minimised; OR

(3) There is an unacceptable “external amenity area noise assessment”; OR

(4) There is an unacceptable “assessment of other relevant issues”.
RECOMMENDATION – OBJECTION ON NOISE GROUNDS (D)

3D. RECOMMEND REFUSAL – in order to PREVENT unacceptable adverse effects

3.11 Notwithstanding that a good acoustic design process has been demonstrated, the noise practitioner should recommend that consent for a new housing development in its proposed form is prevented on noise grounds alone, regardless of any case for the development to proceed if:

(1) Internal noise levels are regarded as “unreasonable” AND either there is an unacceptable “external amenity area noise assessment” or an unacceptable “assessment of other relevant issues”; OR

(2) Internal noise levels are regarded as “unacceptable”.

“Ensuring we have a better built environment in the coming decades is one of the key challenges facing government. It impacts on every area of our lives. The Government must now take that challenge seriously. We hope in responding to our report they will recognise that the drive for more homes must not come at the expense of quality. Everyone deserves a home but they also deserve a good quality home, in a good quality place, that meets their needs as individuals and families. We don’t think the Government’s policy as it stands will deliver that.”
THANK YOU!

Colin J Grimwood BSc, DMS, MCIEH, CEnvH, FRSPH, FIOA
Director, CJGEM
E: cjgem@btinternet.com

Independent advice, consultancy, research and policy analysis