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INTRODUCTION

Ducts have a wide range of applications such as increasing the efficiency of engines, piping
transport systems and exhaust stacks, all of which situate a noise source inside a finite length
duct that radiate sound into an open space. Often one requires an indication of the sound field
produced from such situations to quantify performance. Calculations are made simpler by making
approximations, typically assuming the source is buried deep inside the duct. This allows the
effect of cut-off modes to be neglected. This assumption may not be valid for several applications,
especially ducted fans.

The distance between a noise source and a duct open end has been investigated by Howe,1 who
investigated the rotor blade tip vortex interaction noise for varying distances inside a duct. The
approach Howe used is very different to that used here, as Howe did not break the source into its
acoustic modes. The power radiated by cut-off modes was briefly investigated by Sandowaska2

who investigated the power gain function of a duct mode slightly below cut-off, implying cut-off
modes radiate to the far-field. In this paper we extend this work to form a model valid for all
modes and using a Fourier approach we indicate the radiation efficiency of modes above and
below cut-off.

A FOURIER APPROACH TO DUCT RADIATION

In this section we re-derive the classical radiation from a flanged duct formulation from Tyler
and Sofrin,3 using a Fourier approach. This allows us to separate radiating and non-radiating
components of the velocity, and determine the components that radiate sound power. Consider
an acoustic velocity distribution at the end of a rigid walled duct inside an infinite flange with radius
a and surface area S. A source region on the flange with polar coordinates (r, θ, z) radiates with
axial symmetry to a field point with spherical coordinates (R,φ, θ) as described by Figure 1.
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Figure 1: Semi-inifinite, hard walled flanged circular duct with associated coordinate sys-
tem

Consider an axial velocity distribution umn(r, θ) over the duct opening at a single frequency,
corresponding to a single mode of azimuthal order m and radial order n, with complex amplitude
Vmn

umn(r, θ) = Vmnψmn(r)ejmθ (1)

where ψmn(r) is the normalized mode shape function, that ensures
∫
S
|ψmn(r)|2dS = S. The

mode shape function for a hard-walled cylindrical duct is of the form

ψmn(r) =
Jm(κmnr)

Nmn
r ≤ a (2)

where Jm is the Bessel function of the first kind, κmn is the transverse wave number chosen to
satisfy the hard walled boundary condition and Nmn is the normalization factor

Nmn =

√(
1− m2

κ2mna
2

)
Jm(κmna). (3)

In order to decompose the modal velocity distribution into radiating and non-radiating components
the radial velocity distribution umn(r) is now decomposed into wavenumber spectra ûmn(κ) by
use of the Hankel transform

ûmn(κ) =

∫ ∞
0

umn(r)Jm(κr)rdr (4)

The radial velocity distribution can be reconstructed from its spectral components by inverse
Hankel transform
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umn(r) =

∫ ∞
0

umn(κ)Jm(κr)κdκ. (5)

Substituting (2) for the radial velocity into (4) and evaluating the integral gives

ûmn(κ) =
κa

κ2mn − κ2
J ′m(κa)√(
1− m2

κ2
mna

2

) . (6)

where the prime denotes differentiation with respect to its argument. The velocity distribution
urmn(r, θ) that radiates perfectly to the far-field - corresponding to κ < k components where k is
the excitation wavenumber for a given frequency ω and speed of sound c0, defined as ω

c0
- is

urmn(r) =

∫ k

0

ûmn(κ)Jm(κr)κdκ, (7)

The remaining velocity unrmn(r, θ) components k > κ therefore contribute only to the near-field

unrmn(r) =

∫ ∞
k

ûmn(κ)Jm(κr)κdκ. (8)

It is also worthy of note that on the plane z = 0

urmn(r) + unrmn(r) = umn(r) r ≤ a (9)

urmn(r) + unrmn(r) = 0 r > a (10)

Where for r > a the radiating and non-radiating components are equal and opposite.

Far-field radiation

We now consider the Rayleigh integral to determine the radiated acoustic pressure field pmn(R,φ)
of the form

pmn(R,φ) =
jρ0c0k

2π

∫
S

umn(r, θ)
e−jkh

h
dS(r, θ) (11)

where ρ0 is the density, h is the distance between the source element and the field point

h =
√
R2 + r2 − 2Rr sinφ cos θ. (12)

For large R, h ≈ R in the pressure amplitude and hence can be taken outside of the integral. The
h inside the exponent can be written as h ≈ R − r sin θ cosφ. Substituting these expressions for
h, the Rayleigh integral becomes

pmn(R,φ) ≈ jVmnρ0c0ke
−jkR

2πR

∫
S

umn(r)ejkr sinφ cos θ−jmθdS(r, θ). (13)

Equations (1), (2) and (3) and the Hankel transform of urmn(r) from (7) can be combined and
substituted into the Rayleigh integral,noting dS = rdrdθ, to give
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pmn(R,φ) ≈ jVmnρ0c0ke
−jkR

2πR

∫ 2π

0

∫ ∞
0

∫ k

0

κ2a

κ2mn − κ2
J ′m(κa)√(
1− m2

κ2
mna

2

)Jm(κr)κejkr sinφ cos θ−jmθrdκdrdθ.

(14)

The subsequent integral is evaluated using
∫ 2π

0
ejkr sinφ cos θ−jmθ = 2πjmJm(kr sinφ), from Rien-

stra and Hirschberg,4 to give

pmn(R,φ) ≈ jm+1Vmnρ0c0ke
−jkR

R

∫ ∞
0

∫ k

0

κ2a

κ2mn − κ2
J ′m(κa)√(
1− m2

κ2
mna

2

)Jm(κr)Jm(kr sinφ)rdκdrdθ.

(15)

The radial integral is evaluated using the identity
∫∞
0
Jm(κr)Jm(kr sinφ)rdr = δ(κ−k sinφ)

κ , from
Rienstra and Hirschberg,5 to give

pmn(R,φ, κ) ≈ jm+1Vmnρ0c0ke
−jkR

R

∫ k

0

κa

κ2mn − κ2
J ′m(κa)√(
1− m2

κ2
mna

2

)δ(κ− k sinφ)dκ, (16)

Noting the sifting property of the delta function suggests that each velocity component κ only
radiates to a single far field radiation angle φ, given by

φ = sin−1
κ

k
. (17)

The far field pressure is identical to the classical result derived by Tyler and Sofrin3 which is

pmn(R,φ) ≈ jm+1Vmnρ0c0e
−jkR

R
a

Dmn(φ). (18)

Where the directivity factor Dmn is

Dmn(φ) =
sinφJ ′m(ka sinφ)

(
κ2
mn

k2 − sin2 φ)
√(

1− m2

κ2
mna

2

) . (19)

Modal radiation about cut-off

In order to determine the relative contribution of the axial velocity distribution umn(r)e−jmθ to
the far-field and near-field region a plot of the wavenumber velocity spectrum for a typical mode
m = 9, n = 6 excited below cut-off plotted against κ

κmn
, and m = 12, n = 10 excited above cut-

off is shown in Figure 2. Also shown in the Figure is a vertical line that indicates the excitation
wavenumber, which determines the transition between the radiating (k < κ) and non-radiating
(κ > k) components.

To quantify how cut-off a mode is, we define the cut-off ratio ζ as

ζ =
k

κmn
(20)

where 1 < ζ <∞ indicates a cut-on mode and 0 < ζ < 1 indicates a cut-off mode.
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Figure 2: Velocity spectrum for mode m = 9, n = 6, ζ = 0.8 (left) and m = 12, n = 10, ζ = 1.2
(right)

The analysis above has demonstrated a direct relationship between the far-field directivityDmn(φ)
and the modal velocity wavenumber spectrum ûmn(κ) where κ = k sinφ. The velocity spectrum
at κ = k therefore gives the radiation at 90◦ to the duct axis and κ = 0 gives the radaition at
0◦. The velocity spectrum between 0◦ and 90◦ will then directly map to the directivity, matching
turning points to lobes. We now excite the mode m = 9, n = 6 just below cut-off at ζ = 0.95 and
just above cut-off at ζ = 1.05 and compute the radiating and non-radiating ψ(r)e−jmθ, shown in
Figure 3.

(a) mode (9,6) ζ = 0.95, radiating (left) and non-radiating velocity components (right)

(b) mode (9,6) ζ = 1.05, radiating (left) and non-radiating velocity components (right)

Figure 3: Radiating and non-radiating velocity distributions above and below cut-off

Figure 3 shows that for ζ = 0.95, most of the velocity at the end of the duct does not propagate,
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however, the figure shows that a small amount of velocity propagates to the far-field for excitation
below cut-off. The figure also shows that for ζ = 1.05, most of the velocity propagates to the
far-field but there is a small amount that does not radiate. In the high frequency limit all velocity
radiates to the far-field and in the low frequency limit no velocity radiates.

Directivity above and below cut off

We have demonstrated that below cut-off some components of the modal velocity distribution
radiate to the far field. Using (19) we plot far field directivity functions for excitation just above and
just below cut-off - which has an identical pattern to û(κ). The plots shown are scaled so that the
pressure at the major lobe is 100 dB for the plot that is excited at the highest frequency. Figure 4
shows the directivity of the mode m = 9, n = 6 for ζ = 0.3, 0.9, 1.1 and 1.2.

Increasing frequency

(a) ζ = 0.3 (cut-off) (b) ζ = 0.9 (near cut-on) (c) ζ = 1.1 (cut-on) (d) ζ = 1.2 (cut-on)

Figure 4: Directivity above and below cut-off of the mode m = 9, n = 6

An important observation from Figure 4 is the location of the major lobe which can be identified
into 3 regions; in the cut-on region the major lobe approaches the sideline directions, in the
near cut-on region, the major lobe will vary between 90◦ and near 90◦ somewhere in the sideline
directions. This behavior is determined by the spectrum in Figure 2 as the major lobe will be
located at the highest peak of ûmn(κ) below k which is not necessarily at 90◦. This variation of
the major lobe position occurs until the last turning point of ûmn(κ) is reached with respect to
decreasing wavenumber, and then the directivity will have identical shape for all frequencies with
the major lobe located at 90◦. The wavenumber kcut that transitions from the near cut-on to the
cut-off region occurs at the 1st turning point of û(κ)

dûmn(κ)

dκ

∣∣∣∣
min

= 0.

Exciting the mode at or below κ = kcut there is no dominating lobe in the directivity. It can be
seen from (4) that the turning points are supplied by J ′m(κa), where the turning points of J ′m(κa)
match well with umn(κ), therefore the transition between the near cut-on and cut-off region can
be determined approximately by the minimum wavenumber that satisfies J ′′m(kcuta) = 0. Which
is always below the modal transverse wavenumber of the first radial mode, hence

Ωcut ≤ c0κm,1.
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Radiation efficiency

Morfey6 calculated the modal radiation efficiency τmn, for modes above and below cut-off to show
the maximum radiation efficiency is around cut-off. To calculate the modal power we use (18)
and (17) to infer the far-field pressure distribution in terms of the incident velocity wave number
spectral components κ, which is required for the proceeding numerical analysis.

pmn(κ) ≈ jm+1Vmnρ0c0ke
−jkR

R

J ′m(κa)κa

(κ2mn − κ2)
√(

1− m2

κ2
mna

2

) . (21)

To calculate the power, we integrate the radial intensity across a hemisphere enclosing the duct
opening of radius R, Wmn = π

ρ0c0
R2
∫ π

2

0
|pmn(R,φ)|2 sinφdφ and use the substitution κ = k sinφ

and dκ =
√
k2 − κ2dφ to derive

Wmn =
π

ρ0c0
R2

∫ κ=k−ε

κ=0

|pmn(κ)|2
√

κ2

k4 − (kκ)2
dκ. (22)

where ε is a very small value to avoid evaluation at κ = k, where the integrand becomes singular,
the integration is not sensitive to the size of ε. The modal radiation efficiency τmn is calculated as

τmn =
Wmn

1
2 |Vmn|2πa2ρ0c0

. (23)

Substituting (21) and (22) into (23) gives

τmn =
2(

1− m2

κ2
mna

2

) ∫ k−ε

0

(
J ′m(κa)

(1− κ2
mn

κ2 )

)2
1

κ

√
1

1−
(
κ
k

)2 dκ (24)

Figure 5 shows the radiation efficiency of modes m = 1, 2, 3, 4 for n = 1 and n = 2, note m =
0, n = 1 is always cut-on so was avoided.

Figure 5: Radiation efficiency of the modes m = 1, 2, 3, 4 for n = 1 (left) and n = 2 (right),
shown with the associated mode shapes

Figure 5 shows that the radiation efficiency of all modes have a resonance peak around cut-
off of approximately 1. The figure shows that increasing azimuth increases the asymptotic low
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frequency fall off of τmn. Morfey6 showed that τmn ∝ (ka)2m+2 in the low frequency limit, which
agrees with the Figure. It is also worthy of note that mode m = 1, n = 1 acts as a dipole which
has τmn ∝ (ka)4, a classical result. The Figure shows that modes of the same radial order n
have the same low frequency asymptotic fall off. To investigate this independence of n, Figure 6
shows the radiated components of the mode m = 9, n = 6 and m = 12, n = 10 for ζ = 0.50 and a
plot of the modulus of the radial velocity against radial distance from the center of the duct of the
mode m = 9, n = 6 for ζ = 1.00, 0.10 and 0.01, calculated using (7).

Figure 6: Radiating velocity of the mode (9,6 left) and (12,10 right) for ζ = 0.50

Figure 6 shows the radiation is localized towards the edge of the duct, showing the low frequency
asymptotic behavior of modes is identical to classic edge effect radiation. This gives explanation
to why the efficiency of the modes is independent of n, as the number of nodal circles do not affect
the radiation at the circumference of the duct, which are the dominating radiated components of
the low frequency asymptotic behavior. From the radial velocity plot in the Figure it can be
seen that the location of the maximum velocity moves further outside the duct with decreasing
frequency. At cut-off the maximum radiated velocity is located at the duct wall, and the maximum
velocity within the duct is always located at the wall showing the edge effects.

The relationship between τmn and ka is investigated mathematically by representing the Bessel
function in terms of an infinite series defined as

Jm(κa)→
∞∑
v=0

−1v(κa)(m+2v)

2(m+2v)v!(m+ v)!
. (25)

Taking the differential, squaring and substituting into (24) gives

τmn =
2Bmn(

1− m2

κ2
mna

2

) ∫ k−ε

0

∞∑
v=0

∞∑
v′=0

(κa)(2m+2v+2v′−2)
[

1

(1− κ2
mn

κ2 )2

]
1

κ

√
1

1−
(
κ
k

)2 dκ (26)

where for brevity the constant Bmn is defined

Bmn =

∞∑
v=0

∞∑
v′=0

−1(v+v
′)(m+ 2v)(m+ 2v′)

2(2m+2v+2v′)v!v′!(m+ v)!(m+ v′)!
(27)

The radiation efficiency has it’s most interesting properties for low frequencies at low κa, ac-
knowledging κa is bounded by 0 and ka. For small κa the approximation κa << κmna can be
made, multiplying numerator and denominator by (κa)2 for the fraction in the square bracket
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allows (κmna)4 to be taken out of the integrand, note that to absorb 1
κ into (κa)2m+1 requires

multiplication by a, giving

τmn ≈
2aBmn

(κmna)4
(
1− m2

κ2
mna

2

) ∫ k−ε

0

∞∑
v=0

∞∑
v′=0

(κa)(2m+2v+2v′+1)

√
1

1−
(
κ
k

)2 dκ (28)

using the substitution b = m+ v + v′ and s = κ
k , where dκ = kds gives

τmn ≈
2Bmn

(κmna)4
(
1− m2

κ2
mna

2

) ∞∑
v=0

∞∑
v′=0

(ka)(2b+2)

∫ 1

0

s(2b+1)

√
1

1− s2
ds (29)

From Gradshteyn and Ryzhik7
∫ 1

0
s(2b+1) 1√

1−s2 ds = (2b)!!
(2b+1)!! , where b!! = b × (b − 2) × (b − 4)...

and the last multiplier is 1 for odd or 2 for even b, solving the integral gives

τmn ≈
2Bmn

(κmna)4
(
1− m2

κ2
mna

2

) ∞∑
v=0

∞∑
v′=0

(ka)(2(m+v+v′)+2) (2(m+ v + v′))!!

(2(m+ v + v′) + 1)!!
(30)

The number of terms used is investigated to form a more practical formulation. The special case
of only considering the first term (zeroth term) is of the form

τmn ≈ (ka)2m+2 (2m)!!

κ4mna
4(1− m2

κ2
mna

2 )22m−1(m− 1)!2(2m+ 1)!!
. (31)

It can be seen from (31) that the proportionality relationship τmn ∝ (ka)2m+2 derived by Morfey6

is highlighted . Increasingm sharply decreases the efficiency. Clearly therefore the cut-off modes
are only important for low order azimuthal modes. The weak dependence on n is shown in the
equation by κmn in the denominator which slowly increases with n, but n has considerably less
influence than m. Another case worthy of note is considering the sum to n terms (considering
the zeroth to the n − 1 term). Figure 7 shows a comparison between the numerical expression
for τmn from (24), the approximate expression for τmn from (30), plotted against ζ for the modes
m = 1 n = 1, 2 and 10 considering one and n terms.

Figure 7: Comparison between exact and approximate expression for τmn for the modes
m = 1, n = 1, 2 and 10 considering one (left) and n terms (right) in (30)

Figure 7 shows that the exact and analytic equations converge for small ζ. The Figure shows that
the larger n result in more oscillations before the solution settles to the first term approximation,
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the number of oscillation is proportional to n, the frequency of the turning points are located at
the cut-off frequencies for modes of lower radial order, hence why the n = 10 case has 10 turning
points corresponding to the cut-off ratios of n = 9, 8 etc. The very small dependence on n is also
demonstrated at very low frequency, although near cut-off the efficiency is dependent on m and
n. The first term is shown to be dominant at low frequency and for the n = 1 case.

Conclusion

In this paper we have shown that cut-off modes potentially radiate to the far-field efficiently, mostly
affecting the sideline directions. We have derived an expression that allows the behavior of a sin-
gle mode to be understood - using a Fourier approach to decompose the velocity into radiating
and non-radiating components. We have presented 3 regions of directivity that indicate the loca-
tion of the major lobe - which near cut-off is around 90 ◦.

Decomposing the waves allows us to explain mathematically and physically a result published by
Morfey,6 that the low frequency asymptotic behavior of the efficiency behaves as τmn ∝ (ka)2m+2,
implying the most important cut-off modes are those of lowest azimuthal order. An approximate
expression for τmn has been derived which (for ζ < 1) matches very well for n = 1, we have
shown that the approximation can encompass n > 1 modes by considering a summation to n
terms in the expression. This work is most applicable when the source is located near the open
end of the duct, which is often the case for marine ducted fans.
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