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1 INTRODUCTION  

The transfer matrix method (TMM) is a simple method to model acoustical systems. Using this it is 
possible to analyse the sound absorption/transmission properties of one and two port systems1 and 
model sound absorbing acoustic metamaterials consisting of waveguide structures side-loaded by 
Helmholtz resonators2,3,4. In this paper a serial array of N identical Helmholtz resonators will be 
modelled using the TMM. This will be done for up to N=3. A method of simplification will then be 
applied to the impedance terms obtained using the TMM. This method will utilise the large impedance 
contrast that exists between the neck and cavity of a Helmholtz resonator. By using a ratio of this 
impedance contrast it is possible to create a small parameter, ε. By non-dimensionalising the rest of 
the terms in the impedance expressions, the Taylor series expansion can be taken for ε=0. By using 
the leading order term of these expansions, you then result in an expression for the impedance of a 
serial array of Helmholtz resonators composed of a polynomial of the same order as N. These 
expressions are compared against the TMM to assess validity. A resonant frequency analysis is then 
undertaken to ascertain whether the solution of the polynomials can be used to determines the 
resonant frequencies of the systems. 
 

2 BACKGROUND THEORY 

2.1 The Transfer Matrix Method (TMM)  

The transfer matrix method (TMM) provides the relationship between the initial sound pressure, p, 
and normal acoustic particle velocity, v, at the start (x=0) of a medium and the end (x=L) of a medium. 
The transfer matrix, T, is derived under the assumption that only plane waves propagate through the 
medium in the x direction, meaning it provides the solution for a 1D wave propagation problem. The 
general formulation of the transfer matrix is as follows. 

(1) 

[
𝑃
𝑣
]
𝑥=0

= 𝑇 [
𝑃
𝑣
]
𝑥=𝐿

= [
𝑇11 𝑇12
𝑇21 𝑇22

] [
𝑃
𝑣
]
𝑥=𝐿

 

 
The transfer matrix for a single fluid layer is constructed as 

(2) 

[
𝑃
𝑣
]
𝑥=0

= [
cos⁡(𝑘𝐿) 𝑖𝑍 sin(𝑘𝐿)
𝑖

𝑍
sin(𝑘𝐿) cos⁡(𝑘𝐿)

] [
𝑃
𝑣
]
𝑥=𝐿

= [
𝑇11 𝑇12
𝑇21 𝑇22

] [
𝑃
𝑣
]
𝑥=𝐿

 

 
where k is the acoustic wavenumber and Z is the characteristic impedance. For a 
multilayered structure, the relationship between the input and output pressure and 
acoustic particle velocity are obtained by the multiplication of the transfer matrix of 
each layer. 
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2.2 Modelling a serial array of identical Helmholtz resonators using the TMM 

Consider a serial array of identical cylindrical Helmholtz resonators, as depicted in 
figure 1.  Here rw is the waveguide radius, rn is the HR neck radius, rc is the HR cavity 
radius, ln is the neck length and lc is the cavity length. 

 
To calculate the impedance of this system, the transfer matrix method is used. The 
full matrix, T, is derived from the following expression5:  

(3) 

𝑇 =∏𝑀𝑛𝑀∆𝑙𝑀𝑐

𝑁

 

The transfer matrix for the HR neck and cavity take the following forms, respectively. 
(4) 

𝑀𝑛 = [

cos(𝑘𝑛𝑙𝑛) 𝑖𝑍𝑛 sin(𝑘𝑛𝑙𝑛)
𝑖

𝑍𝑛
sin(𝑘𝑛𝑙𝑛) cos(𝑘𝑛𝑙𝑛)

] 

(5) 

𝑀𝑐 = [

cos(𝑘𝑐𝑙𝑐) 𝑖𝑍𝑐 sin(𝑘𝑐𝑙𝑐)
𝑖

𝑍𝑐
sin(𝑘𝑐𝑙𝑐) cos(𝑘𝑐𝑙𝑐)

] 

 
Here ki and Zi denote the acoustic wavenumber and characteristic impedance, where 
[i=n,c] for either the neck or cavity, respectively. The transfer matrix that accounts 
for the end corrections of the HR neck is written as: 

(6) 

𝑀𝛥𝑙 = [
1 𝑖𝑍𝑛𝑘𝑛𝛥𝑙
0 1

] 

 
Where ∆l is arrived at from the addition of two correction lengths, ∆l= ∆l1+ ∆l2.  ∆l1 
is due to pressure radiation at the discontinuity from the neck to the cavity of the HR6 

Figure 1: Geometry of a serial array of N identical Helmholtz resonators. 
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and ∆l2 comes from the pressure radiation at the discontinuity from the neck to the 
surrounding medium7. 

(7) 

∆𝑙1 = 0.82 [1 − 1.35
𝑟𝑛
𝑟𝑐
+ 0.31 (

𝑟𝑛
𝑟𝑐
)
3

] 

(8) 
∆𝑙2 = 0.6𝑟𝑛 

 
Where rw is the hydraulic radius for non-circular ducts. To determine the impedance 
for the resonator, simply multiply the final T matrix by [1,0]T. This accounts for the 
velocity termination. From this, the impedance can be found as follows: 

(9) 

𝑧𝐻𝑅 =
𝑃𝑥=0
𝑣𝑥=0

=
𝑇11
𝑇21

 

The Reflection coefficient of the one port system described here is determined as 
(10) 

𝑅 =
𝑍𝑤 − 𝑍𝐻𝑅
𝑍𝑤 + 𝑍𝐻𝑅

 

And the absorption coefficient as 
(11) 

𝛼 = 1 − |𝑅|2 
2.3 Viscothermal Losses 

Viscothermal losses within this model are accounted for by evaluating the complex 
frequency dependant density and bulk modulus for a plane wave propagating 
through a section of constant cross section8. For a circular duct of radius r: 

(12) 

𝜌(𝜔) = 𝜌0 (1 −
2𝐽1(𝑟𝐺𝑟)

𝑟𝐺𝑟𝐽0(𝑟𝐺𝑟)
) 

(13) 

𝐾(𝜔) = 𝐾0 (1 + (𝛾 − 1)
2𝐽1(𝑟𝐺𝑘)

𝑟𝐺𝑘𝐽0(𝑟𝐺𝑘)
) 

 

Where 𝐺𝑟 = √
−𝑖𝜔𝜌0

𝜂
 and 𝐺𝑘 = √

−𝑖𝜔𝜌0𝑃𝑟

𝜂
 in which 𝜌0 is the density of air, 𝐾0 = 𝛾𝑃0 is 

the bulk modulus of air, 𝛾 is the ratio of specific heats, 𝑃0 is the atmospheric pressure, 

𝑃𝑟 is the Prandtl number and 𝜂 is the dynamic viscosity. The dynamic fluid density 

and complex compressibility (1/⁡𝐾(𝜔)) can be used to obtain the characteristic 

impedance and acoustic wavenumber. 
(14) 

𝑍(𝜔) = √𝜌(𝜔)/𝐶(𝜔)/𝑆𝑎 

(15) 

𝑘(𝜔) = 𝜔√𝜌(𝜔)𝐶(𝜔) 
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3 SIMPLIFICATION OF IMPEDANCE TERMS VIA ASYMPTOTIC 
APPROXIMATION 

To simplify the impedance expressions obtained via the TMM for serial arrays of 
Helmholtz resonators, a method of asymptotic approximation is used. The premise 
being the utilisation of the impedance contrast between the neck, Zn, and cavity, Zc, 
which allows for a small order term to be obtained. This small order term is defined 
as 

(16) 

𝜀 = √
𝑍𝑐
𝑍𝑛

 

The rest of the terms are rendered dimensionless with the following expressions: 
(17) 

𝑐 =
𝑘𝑐𝑙𝑐
𝜀

 

(18) 

𝑛 =
𝑘𝑛𝑙𝑛
𝜀

 

(19) 

𝜙 = 1 +
Δ𝑙

𝑙𝑛
 

For simplification purposes a new term, x, is defined as 𝑥 = 𝑐𝑛𝜙.This explicitly 
becomes 

(20) 

𝑥 =
𝜔2𝑉𝑐𝑙𝑛

′ 𝜌𝑛(𝜔)

𝑆𝑛𝐾𝑐(𝜔)
 

Here, Vc is the cavity volume, ln’ is the length of the neck plus the correction terms, 
Sn is the cross sectional area of the neck, 𝜌𝑛(𝜔) is the dynamic density of air within 
the neck and 𝐾𝑐(𝜔) is the bulk modulus of air within the cavity. From this it is evident 
that viscous effects dominate in the neck and thermal effects dominate in the cavity. 
 
By solving the Taylor series expansion of the final impedance terms of the serial 
arrays of HRs, up to N=3, for ε=0, the following impedance expressions are obtained 
from the leading order terms for the expansions. The subscript number denotes the 
number of identical HRs within the array. 

(21) 

𝑍1𝐻𝑅 =
𝑖𝐾𝑐(𝜔)(𝑥 − 1)

𝑆𝑛𝑉𝑐
 

(22) 

𝑍2𝐻𝑅 =
𝑖𝐾𝑐(𝜔)(𝑥

2 − 3𝑥 + 1)

(𝑥 − 2)𝑆𝑛𝑉𝑐
 

 
(23) 
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𝑍3𝐻𝑅 =
𝑖𝐾𝑐(𝜔)(𝑥

3 − 5𝑥2 + 6𝑥 − 1)

(𝑥2 − 4𝑥 + 3)𝑆𝑛𝑉𝑐
 

From these expressions it is evident that by increasing N, you increase the order of 
the polynomial composed of x terms with the numerator polynomial being of the 
same order as N, and the denominator being one less. The impedance expression 
for a single HR can be further simplified and expressed as 

(24) 

𝑍1𝐻𝑅 = 𝑖 (
𝜔𝑙𝑛

′ 𝜌𝑛(𝜔)

𝑆𝑛
−
𝐾𝑐(𝜔)

𝜔𝑉𝑐
) 

 
To assess the validity of these expressions, the absorption coefficients obtained with 
these approximate expressions are compared with the absorption coefficients of the 
same systems but modelled with the TMM. The geometry selected can be found in 
the following table. 
 

Table 1:Geometric properties of the serial array of HRs. All units are [mm]. 

rw rn rc ln lc 

30 2 30 10 30 

 
A plot of the resulting absorption coefficients can be seen in figure 

 
Figure 2:Plot of the absorption coefficient of serial arrays of identical Helmholtz resonators up to N=3 obtained 

via the impedance approximation method presented here and the TMM. 
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From this figure it is evident that there is excellent agreement between the two 
methods for the selected geometry. This provides validation for the proposed 
methodology of utilising impedance contrasts between sections to simplify 
expressions obtained using the TMM. One limiting factor worth noting is that the 
accuracy of the derived expressions are reliant upon there being a large impedance 
contrast between the neck and cavity. As such, the larger the neck radius becomes 
in relation to the cavity radius, the more inaccurate these expressions are. 
 

4 RESONANT FREQUENCY ANALYSIS 

Due to the simple nature of the approximated impedance expressions and the fact 
that they are constructed of polynomials, it is possible to derive the resonant 
frequencies of the 3 systems. To illustrate, the Imaginary component of ZHR is 0 at 
resonance, therefore it is a simple matter of finding the x value for which the 
respective polynomial is also equal to 0. Consider an arbitrary solution x=A, by 
rearranging equation (20) the following relation can be found 

(25) 

𝑓𝑟𝑒𝑠(𝑖) =
1

2𝜋
(
𝑆𝑛
𝑉𝑐𝑙𝑛

′
)
0.5

𝑅𝑒 [
𝐾𝑐(𝜔)

𝜌𝑛(𝜔)
]
0.5

(𝐴(𝑖))0.5 

 
Here (i) denotes which resonance is being calculated. Furthermore, as 

(26) 
 

lim
𝜔→∞

𝑅𝑒 [
𝐾𝑐(𝜔)

𝜌𝑛(𝜔)
]
0.5

= 𝑐0 

 
equation (25) can be simplified to 

(27) 

𝑓𝑟𝑒𝑠(𝑖) =
𝑐0
2𝜋

(
𝑆𝑛
𝑉𝑐𝑙𝑛′

)
0.5

(𝐴(𝑖))0.5 

 
To determine the resonant frequencies of the three systems, it is necessary to find 
A. This is done by solving the numerator polynomials in the impedance expressions, 
which can be found in the following table. 
 

Table 2:Values of A for the three HR systems. 

No. A 

1 1 

2 (3 − √5)/2, (3 + √5)/2 
3 0.19806, 1.5550, 3.2470 

 
From this it is evident that for a single HR, the classical formula for the resonant 
frequency of a Helmholtz resonator is obtained; 

(28) 
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𝑓𝑟𝑒𝑠 =
𝑐0
2𝜋

(
𝑆𝑛
𝑉𝑐𝑙𝑛′

)
0.5

 

 
To assess the accuracy of equation (27) the resonant frequencies obtained using 
the TMM (frequency of absorption peaks seen in figure (2)) are compared with the 
resonant frequencies obtained by equation (27). The results can be seen in the 
following table. 
 

No.  α (TMM) α (Approx) 

1 178 186 

2 110, 291 115, 301 

3 78, 223, 324 82, 231, 335 

 
From this table it is evident that there is relatively good agreement between the two 
methods, with only slight discrepancies between the resonant frequencies. It can be 
seen that the resonant frequency obtained by the TMM is always slightly lower than 
from the approximation method, this hints as to the reason for the discrepancy. This 
is the influence of viscothermal losses not being captured within equation (27) as the 
introduction of losses within the system always reduces the resonant frequencies 
due to dampening the system. 
 

5 CONCLUSION 

A method of simplification has been proposed for impedance terms derived by the 
TMM. This has been applied to the case of a serial array of N coupled Helmholtz 
resonators. The simplification method is reliant upon the use of an impedance 
contrast to create a small order term which can be used in the Taylor expansion of 
the TMM impedance expressions. By utilising the leading order term from the Taylor 
series expansions, simple expressions were found composed of polynomials of the 
same order as N. Excellent agreement was found when comparing the absorption 
coefficient obtained via the TMM and with this approximation method. It was also 
found that the resonant frequencies of the systems can be obtained through the 
solution of the polynomials. However, it is evident that there is a slight discrepancy 
between the approximate resonant frequency equations and those achieved by the 
TMM. This is due to viscothermal loss effects not being taken in to account in the 
approximate expressions. 
 

6 REFERENCES 

1. Sang-Hyun Seo and Yang-Hann Kim.  Silencer design by using array resonators for low-
frequency bandnoise reduction.The Journal of the Acoustical Society of America, 
118(4):2332–2338, oct 2005. 

2. V.  Romero-Garc ́ıa,  G.  Theocharis,  O.  Richoux,  A.  Merkel,  V.  Tournat,  and  V.  Pagneux.  
Perfect  andbroadband acoustic absorption by critically coupled sub-wavelength 
resonators.Scientific Reports, 6(1),jan 2016. 

3. No ́e Jim ́enez, Vicent Romero-Garc ́ıa, Vincent Pagneux, and Jean-Philippe Groby. 
Quasiperfect absorptionby subwavelength acoustic panels in transmission using 
accumulation of resonances due to slow sound.Physical Review B, 95(1), jan 2017. 



Proceedings of the Institute of Acoustics 
 
 

Vol. 42. Pt. 1. 2020 
 

 

4. No ́e Jim ́enez, Vicent Romero-Garc ́ıa, Vincent Pagneux, and Jean-Philippe Groby.  
Rainbow-trapping ab-sorbers:  Broadband, perfect and asymmetric sound absorption by 
subwavelength panels for transmissionproblems.Scientific Reports, 7(1):13595, October 
2017. 

5. O Richoux and V Pagneux. Acoustic characterization of the hofstadter butterfly with resonant 
scatterers.Europhysics Letters (EPL), 59(1):34–40, jul 2002. 

6. J. Kergomard and A. Garcia.  Simple discontinuities in acoustic waveguides at low 
frequencies:  Criticalanalysis and formulae.Journal of Sound and Vibration, 114(3):465–479, 
may 1987. 

7. V Dubos, Jean Kergomard, Ali Khettabi, Jean-Pierre Dalmont, D.H. Keefe, and C.J. 
Nederveen. Theoryof sound propagation in a duct with a branched tube using modal 
decomposition.Acta Acustica unitedwith Acustica, 85:153–169, 03 1999. 

 
8. Michael  R.  Stinson.   The  propagation  of  plane  sound  waves  in  narrow  and  wide  

circular  tubes,  andgeneralization to uniform tubes of arbitrary cross-sectional shape.The 
Journal of the Acoustical Societyof America, 89(2):550–558, feb 1991. 

 
 


