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1 INTRODUCTION 
 
This paper provides a review of a family of methods that have been developed for the prediction of 
the vibro-acoustic performance of complex systems over a broad frequency range. The methods 
represent various extensions of the Statistical Energy Analysis (SEA) approach to response 
prediction [1,2], and the main attributes are: (i) the use of a low number of degrees of freedom in the 
model, and (ii) the prediction of the response statistics without the need to perform Monte Carlo 
analysis.  Both of these attributes contribute towards relatively low computational costs and the 
allowance of fast design iterations to explore and optimise designs. The paper focusses on work in 
which the author has been involved over the past 25 years or more, and so there is no intention to 
provide a comprehensive review of the full range of methods that are available for vibro-acoustic 
response prediction.  In addition, the fact that the underlying equations are readily available in the 
cited literature means that no equations are presented here, the aim being to provide a descriptive 
overview of the subject area.  
 
Initially comments are made on the history of the development of mathematical and computational 
models, and on the growing recognition of the importance of uncertainties. The physics underpinning 
the present set of prediction methods is then described, and a sequence of methods for problems of 
increasing complexity is presented.  Concluding comments are then made. 
 
 

2 HISTORICAL CONTEXT 

 

2.1  Design Requirements 
 
Historically the design of engineering systems has passed through a number of distinct phases.  In 
the earliest days design was based on trial and error – the system was built, and then rebuilt if failure 
occurred. As time progressed, given the experience afforded by trial and error, empirical design 
guidelines could be established to improve the chance of success.  With the growth of scientific 
knowledge generated by the Scientific Revolution (from the 16th century onwards), the empirical 
guidelines could be improved and extended to include physics-based calculations.  The rapid 
increase in scientific knowledge, particularly over the past 200 years, has allowed the purely empirical 
aspects of the design guidelines to be gradually reduced, leading ultimately to design assessment 
methods based mainly on the use of calculations.  This kind of progression is exemplified by ship 
design, passing from trail and error, to largely empirical design codes, and then to computer based 
calculations based on scientific and mathematical models.  The same progression can be seen, for 
example, in the design of structures and buildings, and throughout engineering it is now commonplace 
to employ complex computer models as part of the design process.  It should be stressed however 
that such models do not “design” the system – instead they are used to assess the fitness of a 
proposed design, with the aim of building only those systems that are known to meet requirements.  
Design remains a creative process, but the outcome of the design process is much enhanced by the 
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ability to predict in advance the way in which a particular design will behave.  The role of a 
mathematical or computational model is therefore to provide information that will enable the designer 
to make informed decisions, and the nature of the required information will depend on the problem at 
hand.  The present work is concerned with the development of computer models to facilitate the 
design of systems that have good vibro-acoustic performance, and as discussed in what follows, this 
requires particular consideration of the effects of manufacturing uncertainties. 
 
Before considering vibro-acoustic problems per se, it is helpful to consider a design example from the 
early aerospace industry.  Before his career as a novelist, the author Nevil Shute was the “Chief 
Calculator” for the R100 airship project (1925-1930), a job which involved overseeing the stressing 
calculations for the structural frame of the airship.  The calculation method used is described in his 
autobiography Slide Rule [3]: 
 

“the stress calculations for each transverse frame, for instance, required a laborious 
mathematical computation by a pair of calculators that lasted for two or three months 
before a satisfactory and true solution to the forces could be guaranteed.” 

 
In this context a “calculator” was not an electronic instrument, but rather a person using a slide rule 
to perform calculations.  Clearly there has been a huge advance in computational techniques since 
Shute’s day, in terms of both hardware and software.   The problem tackled by Shute’s calculators 
had eight degrees of freedom, and took up to three months to solve.  It is now commonplace for 
problems having millions of degrees of freedom to be solved in a matter of hours using the finite 
element method implemented on a modern computer.  This is not to say that the days of 
computational difficulties are over: the more we are able to compute, the more challenging and difficult 
are the problems we set ourselves, and there is a constant feeling that computational methods need 
to be improved, regardless of the current state of the art.  A second quote from Shute is more telling 
in the present context, and it concerns the completion of the calculation: 
 

“it produced a satisfaction almost amounting to a religious experience. After literally 
months of labour, having filled perhaps fifty foolscap sheets with closely pencilled 
figures, after many disappointments and heartaches, the truth stood revealed, real, 
and perfect, and unquestionable; the very truth.” 

 
This expresses a degree of belief in the accuracy of the calculations that would not be shared today, 
regardless of the huge advance in computational techniques.  At the risk of being facetious, it could 
be said that there has been a loss of faith in the “religious” truth of the calculations.  There is a 
recognition that uncertainties abound in our calculations: in the material properties assumed for our 
system, in the detailed manufactured geometry of the system, and in the mathematical models used 
to approximate the actual system.  In some industries these uncertainties have little effect on the 
performance of the system, but in vibro-acoustics the effect can be immense, as demonstrated by 
Bernhard [4].  Reference [4] reports measurements made on 57 pick-up trucks manufactured on the 
same production line: the frequency response function from the wheel/spindle to the sound level at 
the driver’s ear was measured for each truck.   At frequencies beyond 100 Hz the noise level in the 
different trucks differed by more than 20 dB, demonstrating a high sensitivity to small variations 
introduced in the manufacturing process.  A computational model of the truck, developed at the design 
stage, would of course predict one definite frequency response function, and it is highly unlikely that 
this would agree exactly with any one of the measurements; it is therefore not possible to share 
Shute’s confidence in the calculations, at least for this type of problem. 
 
The most direct way of predicting the variability in the response of a system would be to repeatedly 
rerun the computational model with random changes in the input parameters, i.e. Monte Carlo 
simulation (see for example [5]).  This approach faces two difficulties when applied to vibro-acoustic 
problems: (i) at higher frequencies the model may contain millions of degrees of freedom, and even 
with modern computer hardware the time required for multiple runs might be unfeasible, and (ii) it is 
often not clear which of the input parameters are uncertain, or what the appropriate probability 
distribution might be.  These factors have led to the development the alternative methods of analysis 
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that are the subject of the present paper.  The methods have much in common with statistical 
mechanics, and by way of background this synergy is discussed in the following subsection.  
 
 

2.2  Complex Systems and Statistical Mechanics 

 
The analysis of a system that has a very large number of degrees of freedom and is subject to 
uncertainty is by no means a new problem – in fact it can be argued that the whole subject of statistical 
mechanics is concerned with this issue [6].  For example, a molecular model of a gas in a room has 
many millions of degrees of freedom, associated with the positions of the individual molecules, and 
the instantaneous position of each molecule can never be precisely known (even leaving aside 
quantum effects), and so there is a direct analogy with uncertain engineering systems.  In gas 
dynamics a problem of practical interest would be to consider two adjoining rooms having different 
initial temperatures.  In principle molecular simulations can be performed to compute the changing 
temperatures in the rooms, perhaps randomised in a Monte Carlo way to allow for uncertainties, but 
such a calculation would require a vast amount of computational effort.   Such a calculation would 
also be unnecessary; the classical theory of thermodynamics provides a simple heat flow model of 
this problem in terms of the instantaneous temperatures in each room, yielding two equations for two 
unknowns.  So at first sight there appear to be two competing theories describing the same problem: 
molecular dynamics and classical thermodynamics.  In reality there is only one theory, but with various 
attributes, and this is illustrated in Figure 1.  We can consider: (1) that we have a large complex 
system for which the equations of motion are known (in this case the equations of molecular 
dynamics), (2) the system has a degree of uncertainty or randomness, perhaps in the initial conditions 
and/or in the system properties, (3) given the equations of motion and a description of the uncertainty, 
we can in principle solve for the statistics of the motion at all times, (4) to better understand the motion 
we can compute large scale quantities such as temperature and energy from the motion of the 
individual molecules, (5) most importantly, we might find that these large scale quantities actually 
obey relatively simple laws – these laws are said to be “emergent” in the sense that they emerge from 
the very complicated detailed equations.  So molecular dynamics lies in boxes (1)-(3) of Figure 1, and 
classical thermodynamics lies in box (5), but the two theories are not distinct – one theory emerges 
from another. 

 
Figure 1 A schematic of statistical mechanics and emergent laws [7] 

 
The standard computational models of structural vibration and acoustics (with Monte Carlo 
simulations included to allow for the effects of uncertainty) lie within boxes (1)-(3) of Figure 1.  The 
degrees of freedom are generally those associated with a finite element model or a boundary element 
model of the system, and the computations yield the detailed response (in the deterministic case) or 
the statistical distribution of the response (in the random case).   Given the obvious analogy with 
statistical mechanics, and motivated in part by high frequency problems in the space industry, much 
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work was performed in the 1960s to seek emergent laws that govern vibro-acoustic responses so 
that boxes (1)-(3) might be replaced by box (5).  The key breakthroughs were made by Lyon and his 
co-workers, leading to the development of a method known as Statistical Energy Analysis (SEA) [1].  
This approach has since been extended in a number of ways, as described in the present paper, and 
these extensions are made possible by a remarkable phenomenon known as universality. The 
dynamic response of a random system is crucially dependent on the statistical distribution of the 
natural frequencies of the system and it seems obvious that finding this distribution for a complex 
system should be a very daunting task.  However, it turns out that if the system has a sufficient degree 
of randomness then under certain additional conditions (discussed in what follows) a “universal” 
distribution is obtained for the natural frequencies, and moreover this distribution depends on a single 
simple parameter – the modal density, being the average number of resonances in a unit frequency 
band.  This fact enables a strange phenomenon to occur: the statistics of the response of the system 
can be computed without a detailed knowledge of the statistics of the underlying uncertainties.  
Universality in the present context is a feature of random matrix theory, and this is discussed in the 
following section as a background to the subsequent development of the subject. 
 
 

3 RANDOM MATRIX THEORY AND ITS IMPLICATIONS 

 

3.1  Random Matrix Theory 
 
The natural frequencies of an engineering system are yielded by the solution of a matrix eigenvalue 
problem.  If the system has random properties (for example geometry or material properties)  then 
the matrices will be random, and the resulting statistics of the eigenvalues will have a crucial effect 
on the statistics of the response of the system.  It has long been observed empirically that the 
eigenvalues of a large random matrix seem to have a universal distribution that depends on only one 
parameter, the modal density, as mentioned above.  This behaviour has also been observed 
experimentally for systems ranging from aluminium blocks to nuclear energy levels [8,9].  Two 
questions arise from these observations: (i) why does a universal distribution arise, and (ii) what is 
the mathematical form of this distribution?  Strangely the answer to question (ii) is better established 
than the answer to question (i).   There are various approaches to question (i), but it would be fair to 
say that there is no universally agreed definitive argument; for example, in reference [10] it is argued 
that the universal distribution arises from the dominance of the Vandermonde determinant that 
appears in the transformation from the distribution of the matrix entries to the distribution of the 
eigenvalues.  Regarding question (ii), the answer has been decided by considering a special type of 
random matrix that is amenable to analytical study.  This matrix: (a) is symmetric, (b) has independent 
zero mean Gaussian entries, (c) has off-diagonal entries of equal variance, and (d) has diagonal 
entries with variance equal to twice that of the off-diagonal entries.  These properties are unchanged 
under an orthogonal transformation (for example a rotation of the coordinates), and hence this special 
ensemble of random matrices is known as the Gaussian Orthogonal Ensemble (GOE).   The statistical 
properties of the eigenvalues of the GOE are derived in the text by Mehta [9].  In addition to the joint 
probability distribution of the eigenvalues, mathematically convenient functions known as distribution 
functions and cluster functions are also derived.  The entries of the eigenvectors of the GOE are 
approximately statistically independent and Gaussian, although in some cases correlations between 
the entries can be important, as discussed by Brody et al [11].  The principle of universality implies 
that these results will apply quite generally to large random matrices, not just the GOE, and in 
particular the results can apply to the natural frequencies of a random engineering system.   
 
Just to be clear, there is no claim in the foregoing argument that the random system matrices that 
appear in vibration and acoustics have the form of the GOE.  Rather the claim is that the matrices 
yield a universal eigenvalue distribution, and furthermore this distribution is the same as that obtained 
for the GOE.   It is important to note that there are limitations to the applicability of the principle of 
universality.  The system must be sufficiently random in two senses: (i) there must be strong mixing 
of the eigenvectors across the random ensemble, i.e. the eigenvectors of one realisation of the matrix 
must have a non-zero projection onto a reasonable number of the eigenvectors of any other 
realisation, and (ii) the typical random shift in an eigenvalue must be significant compared to the mean 
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eigenvalue spacing (a condition referred to as statistical overlap [12]).  Condition (i) will generally 
guarantee condition (ii), but condition (ii) can occur without condition (i), for example in a beam of 
uniform but random density, in which case the GOE statistics will not occur.  In view of these 
conditions, the GOE distribution is not likely to apply to the lowest natural frequencies of a system, 
due to the low sensitivity of these frequencies to uncertainties, but is more likely to apply to higher 
natural frequencies where the sensitivity to uncertainty is much greater.  Furthermore, due to condition 
(i), the GOE is more likely to apply to systems that have global mode shapes, i.e. the mode shapes 
are non-zero over the whole system.  For built-up systems there is a strong tendency for the mode 
shapes to be localised to particular regions of the system, and in this case the GOE can be applied 
instead to the uncoupled (or “blocked”) modes of the individual subsystems that comprise the total 
system, as discussed in Sections 4 and 5. 
 
Random matrix theory provides a powerful tool for predicting the response statistics of random 
engineering systems, even in the absence of detailed knowledge of the statistics of the underlying 
physical uncertainties.  Examples for relatively simple systems are given in the next subsection, and 
then the case of more complex built-up systems is considered in the following sections.  
 
 

3.2  Random Matrix Theory and Frequency Response Functions 
 
A frequency response function (FRF) of a system is defined as some measure of the forced response 
divided by some measure of the applied force, expressed as a function of the forcing frequency. For 
example, if a harmonic point load is applied to a system then we might consider an FRF consisting of 
the complex amplitude of the response at some location, divided by the complex amplitude of the 
point load, expressed as a function of the forcing frequency. Alternatively, we might consider an FRF 
consisting of the total kinetic energy of the system, divided by the square of the amplitude of the point 
load, again expressed as a function of the forcing frequency.  If the system has random properties 
then any particular FRF will be different for each possible random configuration of the system.  The 
collection of different curves (as a function of frequency) is known as the ensemble, and an example 
is shown in Figure 2 [13] for the case of a simply supported plate that has a number of small masses 
attached at random points.  

 
Figure 2 Three members of an ensemble of random FRFs for a plate with masses attached in 

random locations [13].  The line represents a critical level of response. 
 
The FRF in this case is the total vibrational energy of the plate produced by a unit point force applied 
at some fixed location, and three members of the ensemble are shown corresponding to different 
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random arrangements of the masses.  To help with design we might seek the following information 
about the ensemble of curves: 
 

- the mean and variance as a function of frequency 
- the statistical distribution at a given frequency 
- the probability that the curve will cross a critical value (represented by the line in Figure 2) 
- some measure of the fluctuation (with frequency) of the curves 

 
Any FRF of a linear system can be calculated if the following items are known: (i) the mode shapes 
and natural frequencies, (ii) the damping, (iii)  the nature of the excitation.  If items (ii) and (iii) are 
known, and if the natural frequencies and mode shapes have GOE statistics, then providing we know 
the modal density (the single parameter appearing in the GOE distribution) we have enough 
information to fully determine the statistical properties of the FRFs.  Practical difficulties arise from 
the fact that the GOE distribution is mathematically complicated, and furthermore the FRF is a 
nonlinear function of the natural frequencies.  These difficulties can be overcome by employing the 
mathematics of random point process theory [14] together with the cluster (or cumulant) functions 
associated with the GOE, to yield simple closed form results for key statistical quantities [15,16] 
including those items that are listed above.  
 
As an example, the results obtained using the above approach to predict the mean and variance of 
the response of a plate were compared to experimental results in reference [17].   

Figure 3 The mean and variance of the energy of a point excited random plate [17].  Left figure – 
the plate.  Upper right - two results for the mean FRF: (a) result for a single point load, (b) an 

average taken over five different locations of the point load.  Lower right – the relative variance of 
the energy. 

 
The plate was randomised by adding nine masses in random locations, and the kinetic energy of the 
plate was measured for point force excitation.   The masses were employed in 19 different 
configurations, giving an ensemble of FRFs of this size.  The plate itself is shown on the left of Figure 
3, and two curves for the mean FRF are shown on the upper right.  The first mean curve, labelled (a), 
corresponds to a single point load, while the second curve, labelled (b), represents a further average 
taken over five different locations of the point load.  The two cases yield practically the same mean 
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value, and on each plot the analytical mean is compared with the experimental mean and the 
ensemble of 19 different FRFs.  The plot in the lower right of Figure 3 shows the relative variance of 
the plate energy for the two cases (a) and (b).  The variance for case (b) is lower, due to the additional 
averaging over the load location, and in all cases the theory shows good agreement with the 
experiment.  The divergence of theory and experiment for the variance at low frequencies can be 
traced to the lack of applicability of the GOE to the lowest modes of the system. 
 
The application of the random matrix (GOE) approach to the other problems listed above (the 
probability of crossing a critical level, and fluctuation rates) is described in reference [13], where again 
very simple results requiring minimal computation are obtained.  Furthermore, it is shown in reference 
[18] that the distribution of an FRF at a single frequency is often well approximated by a log-normal 
distribution, meaning that the mean and variance obtained from the theory can be used to obtain 
confidence intervals and other statistical measures.  A surprising consequence of the GOE that arises 
for causal FRFs is described in reference [19]: this is the “AE condition”, which states that the average 
value of a function of an FRF is equal to the function evaluated at the average value of the FRF.  This 
property can be of use in experimental work – for example the average impedance can be found by 
inverting the average of a measured mobility.  
 
It can be concluded that the random matrix approach can be used to predict FRF statistics without 
computationally expensive finite element or Monte Carlo simulations, providing GOE statistics are 
applicable.  As mentioned in the previous sub-section this is not generally the case for built-up 
systems, and these systems are considered in the following section.  
 
 

4 THE RESPONSE OF BUILT-UP SYSTEMS: SEA 

 
As discussed in Section 2.2, in the 1960s there was a research effort to develop a theory of vibro-
acoustics that would fit into box (5) in Figure 1, thus avoiding the need for very complex detailed 
models of the system.  To achieve this, the first question to be addressed is the choice of metrics, or 
degrees of freedom, that are used to describe the response of the system.  In statistical mechanics 
the temperature of a room might be used as a single measure in place of detailed information 
regarding the state of each molecule of gas, and the temperature is related to the kinetic energy of 
the gas [6]. In this spirit, Lyon [1] proposed that a complex vibro-acoustic system can be represented 
as a set of coupled “subsystems” and the appropriate set of degrees of freedom should be the 
vibrational energy of each subsystem.   In this way, instead of employing 10 million degrees of 
freedom to describe the response of a car using the finite element method, the entire roof panel might 
be a single subsystem, and the interior acoustic space another, and so on.   This approach leads to 
tens or hundreds of degrees of freedom, rather than millions.  Clearly the subsystem vibrational 
energies do not yield the level of detailed information given by a finite element model, but the 
information is nonetheless extremely useful for design – for example the vibrational energy of an 
acoustic volume can be immediately converted into a dB noise level.  There is then the question of 
how the vibrational energies might be found, i.e. is there a set of governing equations for the 
vibrational energies? Lyon [1] proposed that a set of equations can be derived by considering energy 
flow for each subsystem: the power input by applied forces must equal the power dissipated by 
damping plus the net power transferred to connected subsystems.   The power dissipated by damping 
is linearly proportional to the subsystem energy, but it is less obvious how the net power transferred 
can be expressed in terms of the subsystem energies.  Partly by analogy with heat conduction, Lyon 
proposed that the net power transfer between two coupled subsystems should be proportional to the 
difference in the subsystem “modal” energies, i.e. the subsystem energy divided by the modal density.  
The constant of proportionality was termed the “coupling loss factor”.  The resulting equations are 
referred to as Statistical Energy Analysis (SEA), the word “statistical” highlighting the fact that the 
subsystem energies that appear in the equations are ensemble average energies, i.e. corresponding 
to the average over an ensemble of random systems.   To use these equations, the power input to 
each subsystem from external forcing is computed (often using asymptotic arguments), and then the 
linear coupled set of SEA equations is solved to yield the vibrational energies.  
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Since the inception of SEA there have been many attempts to derive the equations from fundamental 
principles, i.e. to start in box (1) of Figure 1 and then derive the equations that must apply in box (5). 
Lyon [1] used two distinct approaches, one based on modal analysis and the other based on wave 
propagation.  The main advantage of having some form of fundamental derivation of SEA is that the 
derivation yields expressions for the coupling loss factors, which are essential components of the 
theory.  Other approaches to the derivation of SEA have included direct analogies to statistical 
mechanics and the use of the concept of entropy [7,20].  One important point is that the SEA equations 
are demonstrably “false”, meaning that they are not true in general and only emerge in an approximate 
way from the underlying detailed dynamics under certain conditions.  The establishment of these 
conditions, and the extent to which they apply to any particular engineering system under 
consideration, has been the source of much debate; much of the tension in this debate can be relaxed 
at the outset by an explicit recognition of the fact that SEA is always an approximate approach. 
 
As mentioned above, in Lyon’s original conception of SEA the subsystem energy was interpreted as 
the ensemble average of the energy over a collection of random systems.  From this point of view 
there is no reason why the SEA prediction for the energy should agree with energy measurements 
on a single system tested in a laboratory.  One way around this issue is to assume that the response 
is ergodic, in the sense that ensemble and frequency averages are the same, and to compare 
measured frequency averages with the SEA predictions.  The validity of this approach will depend on 
the extent to which the ensemble statistics are constant over the specified frequency band, and in 
some cases the ensemble mean response (for example) can vary fairly rapidly with frequency.  An 
alternative approach is to complement the SEA approach with a prediction of the ensemble variance 
of the energies, or ultimately with the ensemble probability density function of the energies.  In that 
way confidence intervals can be established for the response, and it would be expected that a 
laboratory experiment on a single system would fall within these intervals.  The SEA equations do not 
rely on the principle of universality that was discussed in the previous section, but any variance theory, 
or higher order statistical theory, must make some assumption about the statistical distribution of the 
properties of the system.  If the GOE distribution can be applied to the eigenvalues and eigenvectors 
of the system then progress can be made, but as discussed in the previous section the GOE does 
not in general apply to the global modes of a built-up system.  This problem was addressed in 
reference [21], where it was assumed that the modes of each uncoupled (or blocked) subsystem are 
governed independently by the GOE, and on this basis a relatively simple set of equations was 
derived for the variance of the energies. The application of SEA then becomes a three step process: 
(i) the standard SEA equations are used to compute the average energies, (ii) the variance equations 
[21] are used to predict the ensemble variance of the energies, and (iii) confidence intervals for the 
energies are established by assuming a suitable two parameter distribution.  Regarding step (iii), it is 
shown in reference [18] that the log-normal distribution usually provides a good approximation. 
  
In reference [17] the SEA approach is applied to a structure composed of a cylinder and three plates, 
and a comparison is made with experimental measurements; some of the results obtained are 
reproduced here to provide an example of the methodology.  The structure is shown in Figure 4, and 
the results presented in what follows concern the case in which one of the plates (plate 1 say) is 
subjected to a harmonic point force.  The SEA model consists of four subsystems, one for each of 
the system components, and so the SEA equations for the mean energies comprise a set of four 
simultaneous linear equations which are easily solved. The variance of the energies can then be 
found using the method described in reference [21].  The structure was randomised by the addition 
of small masses in random locations, and measurements were taken for an ensemble of 25 different 
mass configurations.  Results for the mean and relative variance of the subsystem energies are 
shown in Figure 5, where good agreement with the experimental results can be seen.   It can be seen 
that the mean energy decreases with distance from the excitation point – the driven subsystem (plate 
1) has the highest energy, and the cylinder and other plates have lower energies.   In contrast the 
relative variance of the energy increases with distance from the excitation point; in qualitative terms, 
more randomness is encountered on longer vibration transmission paths.  
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Figure 4 Test structure considered in reference [17], consisting of a cylinder connected to three 
plates.  The plates have equal areas and properties. 

 
 

Figure 5 The mean and relative variance of the subsystem energies when plate 1 is driven by a 
harmonic point force.  The smooth curves are the SEA predictions, the irregular curves are 

experimental measurements on an ensemble of 25 random systems [17]. 
 

The worsening prediction of the variance at lower frequencies is due to the fact that the theory relies 
on the assumption of GOE modal statistics for each subsystem, and this assumption is more valid at 
higher frequencies.   Given the mean and variance, confidence bounds on the subsystem energies 
can be derived by assuming that the energies have a lognormal distribution.   In Figure 6 the results 
obtained in this way for the 99% confidence levels are compared to the experimental ensemble of 
results.   
 
 
 
 



Proceedings of the Institute of Acoustics 
 

 
 
Vol. 42. Pt. 1. 2020 
 

 
Figure 6  99% confidence bounds (dashed line) compared to the experimental ensemble of results 
for each of the subsystems  The SEA and experimental means are also shown (solid curves) [17]. 

 
It should be emphasised that the SEA approach requires only four degrees of freedom for this 
problem, and so the computational effort needed to produce the results shown in Figures 5 and 6 is 
minimal.   A finite element model of the system over the considered frequency range would require 
very many degrees of freedom, and moreover the model would need to be randomised and solved 
multiple times to compute the response statistics.  
 
In reference [22] the SEA mean and variance equations are extended to allow the prediction of a 
number of higher order statistical properties of the energy FRFs of built-up systems.  These include 
the probability that a critical level will be crossed within a particular frequency band of excitation.  
 
The SEA mean and variance approach described in this section involves the assumption that the 
modes of each subsystem have GOE statistics.  There are systems for which this is not true for all 
subsystems over any realistic frequency range, and in that case an extension to the approach is 
required, as discussed in the following section. 
 
 

4 THE RESPONSE OF BUILT-UP SYSTEMS: HYBRID FE-SEA 

 
There are situations in which a system cannot be represented as an assembly of SEA subsystems 
with each subsystem meeting, for example, the “GOE requirements” of the theory.  For example, the 
door pillars and side rails of a car have very few modes over the frequency range of interest, and 
ideally these systems should be modelled using the finite element (FE) method rather than 
represented as SEA subsystems.   If FE is used for such components, and SEA for other parts of the 
system, then the immediate problem arises as to how to couple the two methods in the same model. 
This is a challenging problem: the FE equations are based on dynamic equilibrium and compatibility, 
whereas the SEA equations are based on energy flow.  Futhermore, the SEA equations incorporate 
systems randomness whereas the FE equations do not.  A solution to this problem is described in 
what follows. 
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The archetypal situation that arises is that of an SEA subsystem surrounded by FE components, and 
progress can be made by considering the response of the SEA subsystem to have two elements.  
Firstly we can consider putting prescribed dynamic displacements on the FE nodes that are coupled 
to the subsystem; this motion will generate waves that propagate into the subsystem and are 
subsequently reflected from the boundaries.  If we ignore the reflections, and consider only the 
response associated with the initially generated waves, then this part of the response is known as the 
“direct field response”.  To view this physically we could imagine there is some device in the interior 
of the subsystem that absorbs waves, so they never reach the boundary. The direct field imposes 
forces on the boundary, and there is a linear matrix relation between the forces and the boundary 
displacements – this relation can be encapsulated in a “direct field dynamic stiffness matrix” that 
yields the forces given the displacements.   Although the direct field dynamic stiffness matrix may 
sound like a fairly abstract concept, it can actually be readily calculated by a variety of methods [23] 
and for the purposes of the present argument it can be assumed to be known.  So, thus far, we have 
coupled the FE model to the direct field response of the SEA subsystem, but we have ignored the 
reflected waves.  This part of the response is known as the “reverberant response”, and to allow for 
randomness in the subsystem it can be represented as a diffuse field of random waves.  The question 
then arises as to how these waves will apply forces to the boundary of the subsystem.  The answer 
is surprisingly simple: it turns out that the cross-spectrum of the forces applied to the FE model is 
proportional to the imaginary part of the direct field dynamic stiffness matrix times the subsystem 
energy – this result is known as the “diffuse field reciprocity relation” [24].  In summary, the motions 
of the FE system inject power into the SEA subsystem via the direct field dynamic stiffness matrix, 
and the SEA reverberant response applies forces to the boundary via the diffuse field reciprocity 
relation. Given these facts a coupled hybrid FE-SEA analysis method can be developed to allow the 
use of FE and SEA in the same computational model of a complex structure [25].  The method has 
two coupled sets of equations: a set for the cross-spectrum of the response of the FE degrees of 
freedom, and a set of SEA equations for the subsystem energies.  The equations are linear in the 
unknowns, if they are solved in sequence – first the SEA equations, and then the FE equations (to be 
clear, no iteration is required, a single solve is performed).  One additional feature of the approach is 
that expressions for the coupling loss factors that are required for the SEA equations are found 
immediately in terms of the direct field dynamic stiffness matrices and the properties of the FE model.  
The hybrid method was originally developed to yield ensemble average response quantities [25], but 
was then extended to yield the ensemble variance of the response [26]. 
 
An academic example of the application of the hybrid FE-SEA method is given in reference [26].  The 
structure considered is shown in the upper right of Figure 7, and comprises a stiff framework to which 
are attached four panels.  In the hybrid model, the framework and the in-plane motion of the panels 
were modelled using FE, and the bending motion of the panels was modelled using SEA.  Benchmark 
results were obtained by performing Monte Carlo simulations for a fully FE model that was 
randomised by the addition of small masses to the panels to generate an ensemble of 100 systems. 
A force was applied to a point on the framework (shown by an arrow in the Figure); the response at 
another point on the framework and the response of a panel are shown in Figure 7, where a 
comparison is made with benchmark results for both the mean and relative variance of the response 
quantities. The number of degrees of freedom in the hybrid model is around ten times less than in the 
full FE model, and the hybrid model yields results for the mean and variance in a single run, obviating 
the need for repeated Monte Carlo simulations.  The reduction in computational effort afforded by the 
hybrid method is therefore very significant, and the accuracy shown in Figure 7 is good.  It can be 
noted that the underlying modally-sparse deterministic behaviour of the framework is very clear in the 
response, leading to large scale fluctuations in the mean values (for example).  These fluctuations 
would not be captured by a fully SEA model of the system.  
 
Finally, it can be noted that the hybrid method can be enhanced by the introduction of parametric 
uncertainty in the FE part of the model [27] and by the incorporation of experimental results [28].  
Furthermore, the “FE” part of the model can represent any deterministic method, including the 
boundary element method (BEM) and computational fluid dynamics (CFD) and so FE, BEM, CFD, 
and SEA can all be used in the same model. 
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Figure 7 Results yielded by a hybrid FE-SEA model of a plate-beam structure compared to 
benchmark Monte Carlo results generated using a fully FE model.  Top row: the kinetic energy of a 
panel, bottom row: the cross-spectrum of the response at a point on the framework.  Left column: 
mean values and the Monte Carlo ensemble, right column: relative variance. The darker curve is 

the hybrid prediction, the lighter curve is the Monte Carlo result [26]. 
 
 

5 CONCLUDING REMARKS 

 
The example problems that have been considered in this paper are academic-type problems drawn 
from the literature, i.e. the examples concern idealised systems that have been selected to show the 
main features of the various methods.  To apply the methods to a range of real engineering systems 
requires the theory to be incorporated into a general purpose software package.  Aspects of the 
methods presented here were implemented in the commercial package AutoSEA, developed by 
Vibro-Acoustic Sciences Inc (Vasci), and then in the package VA One when Vasci was acquired by 
the ESI Group.  The methods are implemented in the Dassault Systemes code Wave6.  
 
As mentioned in the introduction, it should be emphasised that the present paper has focussed on 
work in which the author has been directly involved over past decades, and this is reflected in the 
reference list.   Of course, a range of other approaches are available in the literature. 
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