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1 INTRODUCTION 
Porous absorbers are ubiquitous in acoustics applications. They are, for example, widely used to 
control reverberation in rooms and cavities, or to provide attenuation in ducts1. Because of this, they 
have attracted significant research effort to better understand and model their properties, typically 
informed by the material’s micro-structure. However, the complexity of these models, and the fact 
that many of the parameters they require are not readily measurable, means that simpler empirically-
fitted models are still widely used in Room Acoustics applications. 
 
Probably the best known of these is the 1970 model by Delany and Bazley2. This is applicable for 
fibrous materials and estimates acoustic properties based solely on the material’s flow resistivity, 
which can be readily measured1. Like the vast majority of porous material models, this is a frequency-
domain model that assumes all quantities are time-harmonic with some frequency. It returns the 
characteristic impedance and characteristic wavenumber of the material as an equivalent fluid, both 
of which are complex-valued functions of frequency. To obtain the surface impedance or reflection 
coefficient for a particular configuration of material layers, the Transfer Matrix Method (TMM) is used. 
This is also formulated in the frequency-domain based on a time- harmonic assumption1. 
 
This paper develops a time-domain version of this model, i.e., one that is free from the time-harmonic 
assumption and that can model the response of the material to transient acoustic signals. A key 
motivation for this is the increasing popularity of time-domain numerical models of Room Acoustics, 
such as Finite Difference Time Domain (FDTD)3. These algorithms find application in auralisation of 
spaces but require that material boundary conditions can also be implemented in the time-domain, 
usually as digital filters. Typically, this has been achieved by fitting a filter to the surface impedance3, 
or reflection coefficient, of the front face of the configuration of porous material. This is the simplest 
approach, but simple models can struggle with some common configurations. For example, Mondet 
et al showed that a simple model can reduce uncertainty in measurement4, but saw that it struggled 
to capture the interference pattern that occurs in fairly open materials on a rigid backing. 
 
The approach herein overcomes this issue because it uses filters to represent individual processes – 
propagation through a material layer and reflections at interface – rather than attempt to the final 
surface impedance, which includes the cumulative effect of several processes. This produces a 
network of filters, but it is anticipated that each filter can be simpler and lower order without impacting 
accuracy. The filters fitted are low order Infinite Impulse Response (IIR) filters, which can produce a 
long impulse response – as is required for strong frequency dependence – with minimal computation 
and storage cost. This is also a key advantage of filter fitting over inverse fast Fourier transform of 
frequency domain results. The latter would produce Finite Impulse Response (FIR) filters, which have 
much higher computation and storage costs for the same frequency domain behaviour.  
 
Other time-domain models of acoustic properties of porous materials exist but have been based on 
different mathematical models of the material. Many of these are focussed on modifying the 
differential equations that are then simulated numerically using an FDTD scheme. Zhao et al. adopted 
a similar approach to ours in 2018, using IIR filters to represent bulk modulus and effective density5, 
but their filters are fitted to measurement rather than being derived from a material model. The 2007 
method of Wilson et al begins from a time-domain material model based on relaxation processes6, 



Proceedings of the Institute of Acoustics 
 
 

Vol. 43. Pt. 1. 2021 
 
 

and then discretised these to yield an FIR filter that can be used within an FDTD model of the material. 
A similar numerical strategy was used by Umnova and Turo in 2009 to implement their time-domain 
model7. Usually in these papers the aim is to produce an FDTD scheme in 2D or 3D where the user 
can specify how the material properties vary versus position. The method presented here also uses 
FDTD to model propagation within the material but does so in a simpler way mimicking the TMM. 
Herein, the aim is to replace the TMM with a network of filters, so the FDTD blocks are 1D ‘pipes’ that 
only support unidirectional propagation. The most similar approach to ours is probably the 2005 
method by Fellah et al for double-layered porous media8, which uses transmission and reflectance 
filters at interfaces between layers with different properties, as is developed herein. 
 
Our method differs to that of Fellah et al, however, because it simulates layers in a more modular 
fashion and is based on Delany and Bazley model2, due to its popularity in Room Acoustics. However, 
this model must be modified before it can be transferred to the time domain. The first of these 
modifications was by Miki9 in 1990, who repeated the fit to experimental data while ensuring that the 
models are physically realisable. But in 2014, Dragna and Blanc-Benon10 showed that even Miki’s 
variant is not passive for a rigidly-backed layer, prompting them to propose further modifications. It is 
their ‘Modified Miki model’ that is the basis of the method presented herein. 
 
Section 2 presents the detail of the model and its implementation, including the filter network (section 
2.1), the material model and it’s approximation by a digital filter (section 2.2) and incorporation into a 
1D unidirectional FDTD model (section 2.3). Section 3 presents results from the method, including 
validation against the standard frequency-domain TMM. Results are shown for a single porous layer 
(section 3.1), two layers of porous material (section 3.2) and a single layer of porous material behind 
which is an air gap (section 3.3). All of these are simulated with a rigid backing, as is typical in Room 
Acoustics. Finally, section 0 draws conclusions and identifies avenues for further research. 
 
2 MODEL AND IMPLEMENTATION 
2.1 Network Development 

The starting point for our method is the same as it is for the 
TMM; the reflection and transmission of a normally-incident 
plane wave at a change in media properties. This is 
considered in many Acoustics textbooks and is depicted in 
Figure 1 (note that throughout this paper the e!"#$ time 
convention is used). To the left of the dashed line, the 
medium has characteristic impedance 𝑧% and wavenumber 
𝑘%. To the right of it, these become 𝑧& and 𝑘& respectively. An incident plane wave 𝑝' with amplitude 
𝐴' arrives from the left. Its interaction with the impedance discontinuity causes a reflected wave 𝑝( 
with amplitude 𝐴( as well as a transmitted wave 𝑝) with amplitude 𝐴) that continue rightwards.  
 
The derivation of the TMM goes on to use these amplitudes to relate the surface impedance at this 
interface to the surface impedance at the interface to the next layer1. But in the time domain it is often 
easier to work with transmittance and reflectance instead of surface impedance, because the former 
two are guaranteed to the causal11. Hence, transmission and reflection coefficients at the interface 
are instead considered. These are defined as 𝑇 = 𝐴) 𝐴'⁄  and 𝑅 = 𝐴( 𝐴'⁄  respectively. By the continuity 
of pressure and particle velocity at the interface it can be shown that: 
 

𝑇 =
2𝑧&

𝑧% + 𝑧&
, 𝑅 =

𝑧& − 𝑧%
𝑧% + 𝑧&

. (1) 

For porous materials, characteristic acoustic impedance is a function of frequency. Since at least one 
of these layers will be a porous material, 𝑧% and/or 𝑧& will be frequency dependent hence 𝑇 and 𝑅 will 
also both be frequency dependent. In the time-domain they will therefore manifest as filters that have 
some transmission, or reflection, impulse response. These will be implemented as IIR filters. In our 
implementation, IIR filters will be fitted to 𝑧% and 𝑧& and then filters for 𝑇 and 𝑅 are found from these. 

Figure 1: The transmission / reflection 
of a normally-incident plane wave at a 

change in media properties. 
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The model in Figure 1 is sufficient when 
the material on the right is of infinite 
thickness. In this case there is no wave 
arriving back from material 2. But in the 
TMM, waves arriving from material 2 
need to be accounted for. These occur 
due to the presence of other layers or a 
rigid backing behind. To support this, 
the structure in Figure 1 is summed 
with a reflected version of itself giving 
the structure in Figure 2b. Waves travel 
inwards and outwards so this filter 
network has an Inward channel (IN), 
depicted at the top, and an Outward 
channel (OUT), depicted at the bottom.   
 
Each block in the network has two inlet ports and two outlet ports – one of each for both Inward and 
Outward propagation. Each block is therefore a two-port network, albeit one based on reflection and 
transmission processes rather than impedance, as is more common in acoustic analysis. The 
reflection and transmission processes are also distinguished by the subscripts “IN” and “OUT”. T*+ 
and R*+ match 𝑇 and 𝑅 in eq. 1. T,-. and R,-. are found from the same equation simply by switching 
the role of 𝑧% and 𝑧&. The other blocks are as follows. Block a is where waves enter (IN) and leave 
(OUT) the network from the external air domain. This is where this network would interface to a room 
acoustic model and is also where the results shown in section 3 have been computed. Block c models 
the propagation of the wave through the material layer. This is a simple delay if the layer contains air, 
but there will also be attenuation and dispersion when a porous material is present. Block d is total 
reflection at a rigid backing, which can be implemented trivially simply as a direct connection. If 
multiple layers need to be modelled, blocks b and c are repeated to model these layers and interfaces. 
The main challenge lies in implementing the filters in the boundary and propagation blocks (b & c). 
How to achieve this is considered in the following two sections. 
 
2.2 Material Model and its Implementation with Digital Filters 

The Delany and Bazley model2 remains popular in Room Acoustics but is unsuitable for 
implementation in the time-domain due to the reasons given in section 1. Hence the closely related 
‘Modified Miki Model’ of Dragna and Blanc-Benon is instead chosen10.  This can be stated as: 
 
 

𝑧/(𝜔) = 	 𝑧0 51 + 0.409:
𝜎
𝑠=

0.23&
>, (2) 

 
𝑘/(𝜔) = 	𝑘0 51 + 0.573 :

𝜎
𝑠=

0.23&
>. (3) 

 
Here 𝑧/ and 𝑘/ are respectively the characteristic impedance and wavenumber of the porous material 
in the layer being considered. 𝑧0 = 𝜌0𝑐0 and 𝑘0 = 𝜔 𝑐0⁄  are respectively the characteristic impedance 
and wavenumber of air, where 𝜌0 is the density of air in kg/m3, 𝑐0 is the sound speed in air in m/s, 
and 𝜔 is the angular frequency in rads/s. 𝜎 is the flow resistivity of the material in rayls/m. 
 
The form of eq. 2 and 3 is different and rather more compact compared to how the Delaney and 
Bazley and Miki models are normally written. Notably they have been expressed as functions of the 
Laplace variable 𝑠 = j𝜔 because this will be more amenable to filter fitting. Usually there are separate 
terms for the real and imaginary parts of 𝑧/ and 𝑘/, but the matching of the exponent values for each 
of these allows them to be combined via the identity4,9 (𝑗𝜔)4 = cos(𝛾𝜋 2⁄ )𝜔4 + j sin(𝛾𝜋 2⁄ )𝜔4. This 
exponent matching across real and imaginary parts was due to Miki9, with the further matching of 
exponents between 𝑧/ and 𝑘/ seen in eq. 2 and 3 due to Dragna and Blanc-Benon10. 

Figure 2: A filter network to model a single layer of porous 
material on a rigid back. Sections: (a) External – input and 
output, (b) The boundary block, (c) Propagation through 

the material, (d) Rigid backing – total reflection 
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The raising of 𝑠 = j𝜔 to an integer power is associated with integer order differentiation (or integration 
if the exponent is negative). The raising of 𝑠 to a negative fractional power in eq. 2 and 3 is therefore 
identified as a fractional integral. Dragna and Blanc-Benon10 give a closed-form expression for this 
as a convolution kernel, which could be converted to an FIR filter using the method of Wilson et al6. 
Instead we chose to follow the method of Oustaloup et al12, which gives IIR filters of controllable order. 
This fits an integer order polynomial transfer function, which can be implemented with a digital filter, 
to a fractional power of 𝑠, as occurs in eq. 2 and 3. The parameters of the method are the order of 
the fit 𝑁, a lower frequency limit ω5 and a transition frequency 𝜔6. These were set equivalent to 20 
Hz and 20 kHz respectively in all the results that follow. The Oustaloup algorithm produces a set of 
2𝑁 poles and 2𝑁 zeroes in the 𝑠 domain that are purely real (non-oscillatory). These were converted 
into an order 2𝑁 + 1 digital filter using the Impulse Invariant Method. This was chosen because it 
provides an accurate fit across all frequencies up to Nyquist. 
 

 
The performance of this method is illustrated by the fit to 𝑧/ shown in Figure 3a. This has been 
computed for σ = 	5000 Rayls/m with a digital sampling frequency of 44.1 kHz (used throughout). The 
analytical result is the direct evaluation of eq. 2. The frequency and phase response of the fitted digital 
filter is shown for 𝑁 = 1 and 𝑁 = 4. In the middle of the frequency range the fit to both magnitude and 
phase is very good. At low frequencies the analytical model tends towards infinite amplitude and non-
zero phase. This cannot be realised with a digital filter, hence the fit naturally diverges. It is also likely 
that the analytical target 𝑧7 given in this range is not realistic anyway, since this family of models 
(Delany and Bazley, Miki) are known to be inaccurate at low frequencies. Some additional divergence 
in phase can be seen at high frequencies. This is likely to be due to the Impulse Invariant Method 
approaching Nyquist, where some aliasing of the transfer function specification is possible. Relatively 
little difference can be seen between the 𝑁 = 1 and 𝑁 = 4 fits, supporting the initial premise that lower 
order filters are satisfactory if they are modelling individual processes. Figure 3b illustrates the 
numerical challenges when using higher values of 𝑁. The Oustaloup algorithm will always produce 
at least one pole close to the unit circle in the vicinity of (1,0); this is necessary to capture the increase 
in the magnitude of 𝑧7 towards 0Hz in Figure 3a. However, as 𝑁 is increased the poles and zeros 
increase in number and start to cluster, ultimately leading to filter instability due to finite numerical 
precision, limiting practical values of 𝑁. 
 
2.3 Finite Difference Time Domain (FDTD) Algorithm 

It has been seen that the transmission and reflection filters T and R can be found directly from 𝑧/. 
Unfortunately, finding the propagation filter M is less straightforward. When a time-harmonic wave 
propagates through a porous layer of thickness 𝑑, it’s amplitude and phase are scaled by e8'9!:. 
Because 𝑘/ is complex, this incorporates both delay and attenuation, and because 𝑘/ is frequency 
dependent, the process is dispersive. Ultimately, the fact that 𝑘/ is in the exponent of e8'9!: means 
that a filter for M cannot be directly fitted. An FDTD model of the material layer is required instead. 

Figure 3: The impedance filter for 𝜎 = 5000rayls/m. a) The frequency response for two filter fits, 
one where N=4 and a lower order one, N=1, compared with the analytical impedance. b) The 

pole zero plot for N = 4 with inset magnified section showing the edge of the unit circle. 

a) b) 
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It is common in the TMM to assume that porous materials are locally reacting and that all propagation 
is surface-normal. Because of this, only a 1D FDTD scheme was required. Much of the other literature 
on porous material modelling with FDTD uses a staggered grid scheme5,6, but here a simpler second-
order central difference scheme was used3. Notably, this avoids a dependency of the scheme on 𝑧/ 
that is not expected given that the frequency domain form of M above only involves 𝑘/. It states that 
pressure 𝑝;<!% at the 𝑖th spatial node at the 𝑛 + 1th time-step can be computed from its neighbours by: 
 

𝑝;<!% = 𝑐&
𝑇&

𝑋&
(𝑝;!%< − 2𝑝;< + 𝑝;8%< ) + 2𝑝;< − 𝑝;<8%. (4) 

Here 𝑋 denotes the spatial node spacing and 𝑇 = 1 f=⁄  is the time-step duration, where f= is the digital 
sampling frequency in Hz. 
 
The pressure signal is injected into the FDTD scheme at node 𝑖 = 0 and read out at node 𝑖 = 𝐼, where 
𝐼 × 𝑋 = 𝑑, the material thickness. To avoid reflections from the grid truncation, Mur’s absorbing 
boundary condition13 was applied at this location. This was used to update a ‘ghost node’ at node  
𝑖 = 𝐼 + 1, which then fed into the standard update equation (eq. 4). The update equation for this is: 

 𝑝>!%< = 𝑝><8% +
𝑐𝑇 − 𝑋
𝑐𝑇 + 𝑋

(𝑝>< − 𝑝>!%<8%). (5) 

The stencil for this is shown in orange in Figure 4. It updates the ghost 
node (red) for time step 𝑛, after which eq. 4 (green and blue) is used to 
update all nodes 0 < 𝑖 ≤ 𝐼 for time step 𝑛 + 1. Finally, 𝑝0<!% is set to the 
inlet value, meaning that samples can be ‘pushed’ and ‘popped’ in the 
same time-step, enabling the FDTD scheme to be packaged as a filter. 
 
The fact that this is a porous material is accounted for through sound 
speed 𝑐, which is frequency dependent according to 𝑐 = 𝑐0 × 𝑘0 𝑘/⁄  
because 𝑘/ is frequency dependent in a porous material. The (𝜎 𝑠⁄ )0.23& 
factor is common to both eq. 2 and 3, so the same Oustaloup fit from 
section 2.2 is used for both. But here, the filter polynomials must be 
rearranged to obtain a filter for 𝑐& for eq. 4 and (𝑐𝑇 − 𝑋)	 (𝑐𝑇 + 𝑋)⁄  for 
eq. 5. The former can give stability issues because of the squaring of the filter poles and zeroes. 
 
The stability of the FDTD scheme depends on the Courant–Friedrichs–Lewy (CFL) number 𝑐𝑇 𝑋⁄ . 
Often this is set close to its upper limit (1 in 1D) to maximise accuracy. Here however, 𝑐 is frequency 
dependent, which complicates the analysis; it was set to match the upper frequency limit since this is 
the shortest wavelength in the model. Experimentation showed that 𝑐𝑇 𝑋⁄ ≈ 0.8 was optimal, since 
the system became unstable for some depth and flow resistivity values if the CFL number was higher.  
 
3 RESULTS 
Results were generated by feeding a transient pulse into the P*+% port of the network and comparing 
the resulting output signal at port P,-.% to it. This output signal is either presented directly, to allow 
the transient response of the material configuration to be seen, or both are fast Fourier transformed 
and then divided to compute the frequency domain reflection coefficient, to allow comparison with the 
standard TMM. The excitation pulse was a Ricker (Mexican hat) wavelet with a pulse width of 0.05ms 
and a centre time of 0.4ms. This combination gave minimal onset discontinuity at 0s and provided 
sufficient energy over the frequency range of interest (20 Hz – 10 kHz). It is shown in Figure 5.  
 
For most of the results that follow, 𝑁 = 4 
was used for the filter fit. The exception to 
this was the double layer cases in section 
3.2, where 𝑁 = 1 was required to prevent 
instability arising in the boundary filters. 
 

Figure 4: Implementation of 
Mur’s absorbing boundary 
condition via a ghost node 

𝐼 𝐼 − 1 𝐼 − 2 

Figure 5: The excitation pulse fed into the network 
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3.1 Single Layer Results 

The first results were computed for a 
single-layer configuration, using the 
network exactly as shown in Figure 2. 
Three different materials were simulated, 
with flow resistivity	𝜎 set to 5,000, 15,000 
and 25,000 rayls/m. All samples were 10cm 
thick and on a rigid backing. 
 
The reflected pressure signals output by 
the network (in response to the excitation 
pulse in Figure 5) are shown in Figure 6. All 
three absorbers exhibit an immediate 
reflection from the front face at 0.4ms, due 
to the impedance mismatch between the 
porous material (𝑧/) and air (𝑧0). As 
expected, the reflection’s amplitude is 
larger for greater values of flow resistivity 
due to the larger impedance mismatch. 
This reflection is produced solely by the reflectance filter R*+ in the boundary block (Figure 2b).  
 
The pulse then enters the material propagation block (Figure 2c), as is implemented by the FDTD 
scheme in section 2.3. The delay and attenuation that occur as it propagates through this is dictated 
by the characteristic wavenumber of the material 𝑘/ and the layer thickness 𝑑.  For case a (𝜎 = 5000 
Rayls/m), a second pulse can be clearly seen at 1ms. This is the reflection from the rigid backing. It 
appears so clearly because this material is quite ‘open’ and does not attenuate the wave very 
significantly as it propagates. It arrives with a delay of roughly 6ms, consistent with 2𝑑/𝑐0. In case b 
(𝜎 = 15000 Rayls/m), a far smaller, and slightly later, 2nd pulse can be observed, but for case c (𝜎 =
25000 Rayls/m) none is visible. These denser materials are much more effective at attenuating the 
wave as it propagates through them, but their effectiveness as porous absorbers is compromised by 
the increased amplitude of their front reflections, due to the large impedance mismatch they present. 
 
To validate the new time domain model against the standard TMM, normal-incidence reflection and 
absorption coefficients were plotted for all examples. An example result is shown in Figure 7 for the 
10cm single layer with 𝜎 = 5000 Rayls/m. Agreement is seen to be excellent in the majority of the 
frequency range. Deviation at low frequencies is mostly in magnitude and is likely due to the lower 
frequency limit of the material filter fitting, as discussed in section 2.2. At high frequencies, differences 
are seen in phase and notch frequencies in reflection coefficient. This suggests an inaccuracy in wave 
speed in the FDTD scheme, which is expected since these are known to exhibit dispersion error3. 

Figure 7: Frequency domain validation results for a single 10cm layer with 𝜎 = 5000 rayls/m, 
showing absorption coefficient (a) and reflection coefficient magnitude (b) and phase (c). 

a) b) 

c) 

Figure 6: Reflected pressure signals from 
three 10cm single layer absorbers 

a) 

b) 

c) 
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3.2 Double Layer Results 

The results from three double layer absorbers 
are shown in Figure 8. For these, the boundary 
layer and propagation blocks (b&c) in Figure 2 
are repeated. All the absorbers consist of a top 
5cm layer with 𝜎 = 5000 rayls/m. Behind this 
are layers of differing flow resistivity and/or 
thickness, followed by a rigid backing. 
 
Comparison between the first two designs 
shows the effect of an impedance discontinuity 
between the layers. The back layers are both 
5cm thick, but the first (a) is very dense with 
𝜎 = 50000 rayls/m and the second (b) is more 
open with 𝜎 = 10000 rayls/m. The first result 
(a) has strong similarities with the rigidly back 
results in Figure 6a. Despite the second layer 
being a porous material, it is so dense that 
almost 100% reflection is occurring. Figure 6b 
shows that using a less dense second layer mitigates this, but now a later reflection around 1ms 
occurs due to the rigid backing. Finally, the third design in Figure 6c doubles the thickness of the 
second layer, delaying and attenuating this backing reflection. 
 
3.3 Air Gap Results 

Finally, three absorbers with a single porous 
layer and an air gap were modelled, a common 
and cost-effective design. This again required 
duplication of the boundary and propagation 
blocks in Figure 2 b&c, but the air layer does 
not require an FDTD model. Instead, a simple 
delay filter is sufficient to capture its behaviour. 
 
In all cases the front porous material layer is 
5cm thick. Designs a and c show the effect of 
its density; 𝜎 = 5000 rayls/m for a and 𝜎 =
25000 rayls/m for c. Both have a 5cm air gap. 
Again, it is seen that the impedance mismatch 
controls the initial reflection. But compared to 
Figure 6 a&c, the reflections from the rigid 
backing are stronger since half the material 
has been removed and replaced with air. 
 
The effect of air gap thickness is shown by comparing the responses from designs a and b. These 
have the same porous material but differing air gap; 5cm and 15cm respectively. This bigger gap 
spreads out the reflections in time due to the extra propagation delay it allows. What is especially 
interesting is the third pulse in b that appears around 2.5ms. This involves a second order reflection 
in the air cavity. This pulse has propagated: i) through the material, ii) through the air gap reflecting 
off the rigid backing, iii) reflected off the rear of the porous material, iv) travelled through the air gap 
and reflected off the rigid backing a second time, before v) finally propagating back through the 
material and emerging into the room from the front of the device. This pulse has low amplitude, so is 
unlikely to be very important. But nonetheless, these results illustrate how time domain reflection 
responses can reveal details that are not obvious in results from time harmonic models. 
 
 

Figure 9: Reflected pressure signals from 
three absorbers with air gaps 

a) 

b) 

c) 

Figure 8: Reflected pressure signals from 
three double layer absorbers 

a) 

b) 

c) 
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4 CONCLUSIONS 
A time domain version of the Transfer Matrix Method (TMM) has been presented. This comprises a 
modular network of filters that intuitively represents transmission and reflection at material interfaces, 
and propagation through layers. Filters were fitted to the Modified Miki Model of Dragna and Blanc-
Benon10 using the method of Oustaloup et al12. The propagation ‘filter’ used a 1D FDTD scheme. 
Results were validated against the standard frequency domain TMM by fast Fourier transform. 
Agreement was excellent in the majority of the frequency range, though divergence occurs at low and 
high frequencies due to filter fitting limitations (and possibly FDTD dispersion error). Issues with filter 
stability were experienced for higher order filter fits, but these did not appear to be necessary. The 
validity constraints of the Delany and Bazley model1 would also apply to this model in real world use. 
 
Notably, the results have shown how time domain models can reveal details that are not obvious 
when time harmonic models are used. Many Room Acoustic designers are concerned about temporal 
detail, so methods that show this are likely to be of interest, even though they are mathematically 
equivalent to existing frequency domain approaches. Further work could involve adding support for 
non-normal incidence, comparing to other time domain material models or attempting to eliminate the 
need for the FDTD model by direct inverse Laplace transform of the propagation operator. 
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