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1      INTRODUCTION 
Acoustic “breakout” from ducts is a result of sound radiation from elastic or acoustically permeable 
porous duct walls, with solid or fluid motion in the walls excited by an internal sound field. There are 
various situations in which breakout noise can be a problem. For example sheet metal HVAC 
ductwork, passing through ceiling voids above internal building spaces, can radiate noise into the 
occupied spaces beneath and thereby create disturbance to whomever is present. Even if the noise 
propagating internally within the duct is broadband in nature, the radiated noise may have 
significant (usually low frequency) narrow-band components related to structural resonances in the 
duct walls, and this can exacerbate the intrusiveness of the breakout component. Despite the 
importance of breakout noise in HVAC acoustics, it was not studied in any detail until the late 1970s 
onward. Prior to that time Allen1 had given a simple analysis of noise transmission both out of, and 
into, a duct in a reverberant space (only really applicable at high frequencies), Webb3 had given a 
good general account of breakout and Sharland2 had briefly discussed the significance of breakout 
in HVAC ducts, including Allen’s breakout formula. Since the breakout sound transmission loss of 
duct walls (apart from those of circular cross-section) is usually lowest at low frequencies and the 
internal sound power spectral density normally rises with falling frequency, breakout noise in HVAC 
ducts is predominantly a low frequency problem. It often sounds subjectively like a “rumble”. 
 
Another example of breakout is noise radiation from piping downstream of pressure control valves, 
but here the internal sound power spectrum tends to peak at high frequencies and the pipe is 
invariably circular in cross-section, so the radiated noise is mainly high frequency in content, with 
peaks around the ring frequency and the critical frequency of the pipe wall. Multi-mode mode sound 
propagation in the duct is associated with control valve noise radiation from piping. HVAC duct wall 
breakout usually arises principally from fan noise, whereas pressure control valve noise is caused 
predominantly by mixing noise in the jet formed downstream of the valve. For these reasons, valve 
noise as a technical area is usually regarded as being distinct from HVAC duct breakout noise. 
Though it constitutes a widespread and very significant noise problem, valve noise will be largely 
excluded from the present discussion (which mainly centres round HVAC duct noise breakout) 
because it has not been of specific interest to the author in his research. However, it could certainly 
be included as a breakout problem in a more general context.  
 
“Casing noise” in automotive exhaust silencers is a further example of noise breakout. Here, the 
dominant noise source is engine breathing noise and it is structural vibration of the silencer casing – 
driven by the internal sound field – that radiates noise to the exterior. Silencer casings are often 
circular or oval in cross-section, though more complex wall geometries (e.g., the “clam-shell” 
configuration) also exist. Casing noise in silencers has been less widely studied than HVAC 
breakout noise or valve noise, and appears to be less well quantified. It would seem likely to be 
most important at mid to high frequencies, though this author is prepared to stand corrected in the 
light of more definite information. It would seem, in view of the strongly tonal content of breathing 
noise, that casing noise would become important when one of the harmonics of the noise source 
corresponded to a resonance frequency of the silencer casing. Therefore one would expect it to 
appear and disappear as the engine speed and load varied. As with valve noise, silencer casing 
noise is not discussed in any detail in this paper. 
 



 

“Flanking” effects in dissipative silencers can be partly caused by breakout and subsequent 
“breakin” through flexible duct walls, thus limiting the performance of the silencer. These effects are 
not very well understood, quantitatively, even today and can be an important and unpredictable 
factor in silencer design.  
 
Breakout noise is generally regarded as being a problem, but there are cases in which it can be of 
benefit. Notably, in HVAC acoustics, there is “natural duct attenuation”, that occurs in unlined ducts. 
This has been reported by a number of authors (e.g., Wilbur and Simmons4, Piestrup and Wesler5 
and Kerka6) with no real attempt at properly identifying and quantifying the attenuation mechanism, 
but has been modelled by the present author7 with modest success. In this work, a breakout/breakin 
mechanism was held to be responsible for the attenuation phenomenon, and the acoustic 
characteristics of the surrounding space (as well as the construction of the duct walls) were shown 
to be factors determining the degree of attenuation. Natural duct attenuation is an unavoidable 
phenomenon in plain sheet metal ducting, but it can be exploited by careful design and will 
complement the (usually meagre) attenuation afforded by dissipative silencers at low frequencies. It 
reaches maxima in the region of transverse resonance frequencies of the duct walls. 
 
Another manifestation of duct wall breakout which can have a beneficial effect occurs in ducts with 
walls that are permeable to fluid flow. The porous, woven fabric hoses that have become popular in 
recent years as components of automotive air intake systems are of this type. There are two main 
effects associated with these hoses: acoustic breakout, such that a proportion of the internally 
propagated intake breathing noise from the engine is transmitted out through the duct walls 
upstream of the air inlet; and acoustic dissipation, such that a very significant proportion of the 
incident internal sound power is actually dissipated in the duct walls. These effects will be discussed 
in more detail later in this paper. 
 
The main purpose of this paper is to present both the disadvantageous and useful effects of duct 
wall breakout side by side, and to highlight the main physical effects responsible for the phenomena 
involved, as well as outlining predictive methods for breakout. Mathematics will be avoided as far as 
possible, so as not to encumber the discussion unduly with formulae. Full details of the various 
types of analysis employed in past studies are given in many of the references cited here. 
 
 
2      DUCT WALL BREAKOUT AS A PROBLEM 

2.1  Definitions and assumptions  
 
In Figure 1 is shown a sound wave (for the sake of argument, depicted as plane), propagating 
internally in a duct, in one direction only. The walls may be either elastic and impermeable, or 
permeable and rigid (again for the sake of argument). In either case, “breakout” sound will radiate 
from the duct walls, and usually the direction of propagation of this will be neither normal to, nor 
parallel to, the duct walls. In practice, the radiation pattern would be complex in nature, since the 
duct would be of finite length, possibly with stiffening elements which could give rise to significant 
reflected waves. However, this idealised picture is appropriate for a definition of breakout sound 
transmission loss (TL): 
 
    TL = 10 log[(Wi/Ai)/(Wr/Ar)],    (1) 
 
where 
 
 Wi = sound power entering duct 
 Wr = sound power radiated by duct walls 
 Ai = internal duct cross-sectional area 
 Ar = radiating area of duct surface. 
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Figure 1.  Breakout from a duct 
 
The breakout sound power Wr may be radiated into a free field or (say) a reverberant space. Other 
breakout definitions are, of course, possible, but that above appears to be the most popular. 
 
In the case of breakout from flexible-walled ducts it is generally sufficient to assume that there is 
only one wave propagating, in the direction away from the noise source. Reflections will, of course, 
occur in practice but these would normally be relatively weak (depending on the duct configuration) 
and can be ignored as a first approximation. Furthermore, it may be assumed that structural waves 
– in the duct walls – and acoustic waves – within the duct – travel at the same speed, with an axial 
wavenumber kx (in the x direction). We can, therefore, say that (pressure, displacement etc.) ∝ 
exp(-ikxx), if x points away from the source. Thus coupled waves are assumed to exist and kx 
needs, strictly speaking, to be found from a dispersion equation that embodies both acoustic and 
structural wave motion. Reflections of coupled waves from discontinuities would generally be highly 
complex in nature, since a set of coupled waves will normally exist and these would be required to 
satisfy several structural and acoustic matching conditions at each discontinuity. One possible 
example of a discontinuity is a relatively massive and stiff flange in an otherwise continuous sheet 
metal duct. This is likely to present little impediment to the acoustic wave, but would be a significant 
reflector of the structural wave. Structural reflections would be mainly in coupled modes that 
strongly resembled free structural wave modes, with little structural/acoustic coupling. At low 
frequencies (well below the critical frequency for wave coincidence for the duct wall material), these 
modes would travel slowly and radiate little sound power. They could be termed “acoustically slow” 
(as in plate modes) and would radiate sound very inefficiently. This is one reason why the single 
coupled travelling-wave assumption is justified. In all of what follows, mean fluid flow is neglected. 
This has been included in a numerical formulation by Kirby8 for lined rectangular ducts, but its 
effects are small for low mean flow Mach numbers. 
 
2.2  The prediction of breakout TL in ducts with flexible walls 

There are essentially three parts to the prediction of breakout TL in flexible-walled ducts:  

(1) calculation of the structural response of the duct walls for a given internal sound field 
(2) calculation of the radiation efficiency of the walls, and hence of the breakout sound power 



 

(3) calculation of the breakout TL from Wr, Wi (found from the internal sound field) and the TL 
    definition in equation (1). 
 
2.2.1  The structural response of the walls 

The calculation of the wall response depends very much on the cross-sectional geometry of the 
duct walls (this is assumed uniform along the length of the duct), and on the nature of the internal 

three most common duct shapes are shown in Figure 2. In rectangular ducts, the sound field. The 
   

                        
 

Figure 2. Common shapes of HVAC duct 
 
response may be found by solving the inhomogeneous equation of motion for each wall (which is 
regarded as being a flat plate), with appropriate coupling conditions at the four corners. The forcing 
function is the internal/external sound pressure differential, either for the fundamental acoustic 
mode or for higher order modes. In the former case, it is straightforward to include coupling effects 
between the internal sound field and the structure, and to compute kx. In the latter case, it is neither 
so simple nor particularly necessary. Either approximate analytical techniques, or fully numerical 
methods such as finite differences9 or finite elements10, may be employed. Peaks in the wall 
response, corresponding to transverse structural resonances of the duct walls (taken all together, 
and usefully viewed as a set of coupled beams formed by taking a transverse slice from the duct), 
occur at certain frequencies. These are associated with minima in the breakout TL of the duct. 
Structural damping in the duct wall may be taken into account in the form of the imaginary part of a 
complex Young’s modulus of the duct wall material. A mass law model for the wall response works 
well, above the region of the lowest transverse wall resonances, much as it does in the case of 
sound transmission through single flat partitions. 



 

In ducts having a circular (or distorted circular) cross-section, the equations of motion to be solved 
are those for a non-circular cylindrical shell, e.g. the inhomogeneous Reissner-Naghdi-Berry 
equations or the Donnell-Mushtari equations, with a forcing term representing the internal/external 
sound pressure difference across the shell surface. (In the case of circular section ducts, these 
equations simplify considerably.) Cummings, Chang and Astley11 solved the Reissner-Naghdi-Berry 
equations by the use of a Fourier series method. This method proved reasonably successful in 
predicting the wall transmission loss for the plane internal acoustic mode in the case of two 
distorted circular “long-seam” ducts (galvanized steel ducts with a longitudinal seam, associated 
with a degree of flattening of the wall). The main effect of wall distortion is to increase the structural 
response of the duct wall considerably, at low to mid frequencies, as compared to an ideally circular 
section shell. This effect arises from what has been termed “mode coupling” and the reader is 
referred also to other authors’ work such as that by Bentley and Firth12 and Yousri and Fahy13 for 
further discussion. In the case of the plane mode propagating within a distorted cylindrical shell, the 
effect involves a series of higher structural modes, in the duct wall, being excited by an internal 
uniform sound pressure distribution: the wall distortion produces a non-zero generalized force for 
the higher modes of the duct wall. In distorted circular ducts, maxima occur in the wall response at 
the ring frequency and the critical frequency for wave coincidence, as in undistorted ducts. 
 
In the case of flat-oval section ducts (which have two opposite flat sides and two opposite circularly 
curved sides), a simplistic view of the wall response behaviour might be that a combination of the 
behaviours of flat-walled and circular ducts would be expected. Perhaps surprisingly, this is what 
occurs in practice. The response of the flat parts of the wall increases with frequency much as it 
does in the case of a duct of rectangular cross-section, and a maximum response occurs close to 
the ring frequency in the curved parts of the wall. A simple model for the wall response involves a 
combination of mass law impedance for the flat walls and ideal circular duct wall impedance for the 
curved walls. This has been used by Cummings and Chang15 and yields reasonable breakout TL 
predictions for the plane internal duct mode. In the same paper, results from a finite difference 
solution to the Reissner-Naghdi-Berry non-circular cylindrical shell equations – applied to the flat-
oval duct geometry – are also presented. Not surprisingly, the numerical solution yields rather better 
TL predictions than the simpler model, but the simplicity of the latter is a virtue in practical terms. 
 
It will be recalled that it is the sound pressure differential across the duct wall that forces the wall 
motion, and at first sight it would therefore appear that the sound pressure on the outer surface of 
the duct should be a necessary part of the TL formulation.  However, it was shown by Astley and 
Cummings10 that the external radiation load on the duct walls is negligible in comparison to the wall 
impedance, including structural damping. There is therefore no need to include the radiation 
impedance in the TL prediction method. It should be noted that the acoustic radiation models in 
Section 2.2.2 are intended for forecasting the far-field sound pressure distribution (and the 
associated breakout sound power) and, and would – as they stand – be incapable of predicting of 
the sound pressure on the outer surface of the duct. If it were required to predict the outer surface 
sound pressure distribution, the formulation employed by Cummings and Kirby16, involving the 
mutual radiation impedances of area elements of the outer duct surface, could be used. 
 
2.2.2  Sound radiation from the walls 

At relatively low frequencies, the finite-length line source model of Brown and Rennison17 yields 
good predictions of sound radiation, as discussed by Cummings18. This involves “peristaltic” 
structural waves travelling along a finite-length source, and the effective volume velocity amplitude 
per unit length can be found simply by integrating the wall velocity around the duct perimeter. It is 
usually sufficient to consider waves travelling in one direction only, but wave reflections can readily 
be included if necessary. This model gives good results for both the free-field directivity pattern of 
the acoustic radiation and the radiation efficiency. The sound power radiated is dependent on the 
phase speed of the peristaltic waves and on the duct length, as well as on the volume velocity 
amplitude per unit length of duct. In a source of infinite length, no sound is radiated for subsonic 
structural waves, though the source begins to radiate efficiently as soon as the wave speed 
becomes supersonic. In the case of a finite length source, scattering effects brought about by the 
ends of the duct bring about a more gradual change in radiating ability, and finite sound power is 



 

radiated for subsonically propagating waves. A “radiation efficiency” factor Cr may be defined as the 
sound power radiated, per unit length of source, from a finite length line source (with a given wave 
speed, frequency and volume velocity per unit length) divided by the sound power radiated, per unit 
length, from an infinite line source with supersonically travelling waves (the other conditions being 
identical to those in the finite-length source). The model of Brown and Rennison shows that, 
provided the duct length is greater than about an acoustic wavelength, for sonically propagating 
waves (which would be roughly characteristic of duct wall vibration away from wall resonance 
frequencies, where the structural wave speed along the duct could be either much less than, or 
much greater than, the sound speed), Cr ≈ 0.5. This is a good assumption for sound radiation from 
duct walls, but would break down near to wall resonance frequencies. 
 
In the case of higher circumferential order structural mode radiation from duct walls, where the net 
volume velocity around the duct perimeter would be zero, the simple low frequency line source 
model fails since it predicts zero sound radiation, whereas it is observed in practice that 
circumferential multipole radiation occurs, with an efficiency that increases with frequency. This 
situation can arise in the case of higher order internal acoustic mode propagation in flexible walled 
ducts, or – at high frequencies – in any case of duct wall radiation where the wall vibration 
amplitude is perimetrally non-uniform, and the higher order circumferential Fourier components of 
the wall vibration pattern can radiate significantly. A more complete model is therefore required for 
such cases. It is usually sufficient to approximate the duct cross-section as being circular, with the 
same perimeter as the actual duct, the actual perimetral vibration pattern being distributed around 
the circumference of the equivalent circular section radiator. A suitable finite-length radiator model 
of this type is described by Cummings, Chang and Astley11, and consists of an infinite-length rigid 
cylinder with a finite-length vibrating section, the two remaining semi-infinite regions of cylinder 
being immobile. It is shown by Astley in this paper that the end extensions on the cylinder make 
little difference to the acoustic radiation, so that their presence may be ignored. In any case, one 
can argue that they should be present, if one is considering radiation from a finite section of 
continuous ducting. A detailed numerical study of sound radiation from rectangular ducts by Astley 
(reported in the paper by Astley and Cummings10) provides justification for the use of the simple line 
source model in the case of rectangular ducts with a plane internal acoustic mode. 
 
2.2.3  Calculation of the internal and radiated sound power, and the TL 

The internal sound power in the duct may conveniently be expressed 
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where the axial wavenumber kx in the duct may be complex, as it would be in the case of walls with 
internal damping, ω is the radian frequency, ρ is the air density, Ai is (as before) the internal cross-
sectional areas of the duct and  is the internal sound pressure distribution (where P)(yΨiP i is a 
constant sound pressure), y being a relative position vector on the duct cross-section. The radiated 
sound power may be expressed 
 

     8/2 LqCrr ωρ=W     (3) 
 
if a line source model is being used, where q is the volume velocity per unit length on the outer 
surface of the duct and L is the radiating length of the duct. If the aforementioned cylindrical radiator 
model is used, a modal summation of sound power contributions would be required. The interested 
reader is referred, for details of this, to the work of Cummings, Chang and Astley11 and also of 
Cummings19, where a simpler cylindrical radiator model – applied to internal higher order acoustic 
mode excitation of duct walls – is described. The breakout TL may be found, from Wi and Wr, by the 
use of equation (1). 
 
 



 

2.2.4  Some typical TL results for ducts with differing cross-sectional shapes 

  
Figure 3. Predicted, ——, and measured, , TL of a 203mm square section duct with  

1.2mm steel walls 
 

 
Figure 4. Predicted, ——, and measured, , TL of a 356mm diameter long-seam distorted 

circular duct with 1.2mm galvanized steel walls; — - —, predicted TL of ideally circular duct. 



 

A good example of the TL of a rectangular duct is shown in Figure 3. Here, the duct cross-section is 
square, and there is a fundamental transverse wall resonance leading to a very pronounced dip in 
the TL curve at 170 Hz. This is so marked that internally propagated broadband noise within the 
experimental duct gave rise to breakout noise having a predominantly tonal character. Below the 
fundamental wall resonance, the TL rises with falling frequency, since the duct wall impedance is 
then stiffness controlled. The second transverse wall resonance at 1 kHz produces a much less 
severe dip in TL. It may be noted that the predicted and measured TL figures are in generally good 
agreement, and that a rather high wall loss factor of the order of 0.15 is required to give good 
agreement between prediction and experiment around resonance frequencies. 
 
In rectangular ducts generally, above about the second transverse wall resonance, the TL increases 
at roughly 3 dB per doubling of frequency in the plane-wave propagation frequency region, rising to 
6 dB per octave where many modes propagate in the duct. This is discussed in detail by 
Cummings20, who proposed fairly simple mass law TL models that yield generally satisfactory 
predictions. 
 
The predicted and measured TL of a “long-seam” distorted circular section duct is shown in Figure 
4. The continuous curve is predicted by the use of the Fourier series model mentioned in Section 
2.2.1, and the dashed and dotted curve is predicted for an ideally circular section duct with the 
same diameter. It can be seen that wall distortion brings about an enormous fall in TL – amounting 
to about 80 dB at just over 30 Hz – at the lower frequencies. This effect is caused by mode 
coupling, as previously mentioned. At the higher frequencies, where the ideally circular duct TL falls 
to fairly low values, there is a much lesser effect from wall distortion. The predicted TL plots are 
both made on the basis of the plane internal acoustic mode, and – not surprisingly – some TL 
minima are observed in the measured data around the cut-on frequencies of the first few higher 
order acoustic modes in the duct. The ring frequency resonance and the wave coincidence effect 
persist, even in the presence of wall distortion. 
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Figure 5. Predicted, —— (finite difference), — — (circular cylinder/flat plate model), and 
measured, , TL of a 254mm×776mm flat-oval duct with 0.64mm galvanized steel walls. 
 



 

In Figure 5 is shown the TL of a flat-oval duct. This may be regarded as an extreme case of a 
distorted circular section duct. The solid curve is predicted by the use of a finite difference solution 
for the wall vibration, and is in good agreement with measured data up to about 700 Hz. Above that 
frequency, higher-order mode propagation within the duct brings about discrepancies between 
prediction and measurement, since the predictions are made on the basis of the plane internal 
acoustic mode. The much simpler hybrid prediction method, based on a combination of flat plate 
mass law for the flat walls and ideal circular duct wall impedance for the curved walls, is in 
reasonable agreement with measured data. Transverse wall resonances appear in the finite 
difference TL plot, and so does the ring frequency resonance. It is interesting that the flat-oval duct 
exhibits characteristics of both rectangular and circular ducts. The positive slope of the TL curve 
below about 4 kHz may be regarded as an extension of the mode-coupling behaviour evident in the 
distorted circular duct. In this case, the wall distortion is such that the radius of curvature of each flat 
wall is infinite, and flat-plate behaviour dominates the TL in this frequency range. 
 
2.3  Flanking transmission in rectangular ducts 

It is well known that “flanking transmission” can limit the performance of duct silencers. Vér21 noted 
that, as the length of a dissipative duct liner in a sheet metal duct was increased, the acoustic 
attenuation of the liner tended to level off at a certain point, and speculated that this may have been 
caused by “...bending waves travelling in the duct wall...”. Mechel22 distinguished between 
breakout/breakin flanking transmission (which he termed a “radiation bypass”) and direct structural 
flanking transmission through the silencer housing or the supporting structure of sound-absorbing 
baffles (which he termed “structure-borne sound”). He recognized that these effects would limit the 
attenuation of high-performance silencers, and “...must be avoided very carefully”. 

Cummings and Astley23 later presented a model for flanking effects in an acoustically lined duct with 
flexible walls, situated within a reverberant enclosure. Both radiation bypass and direct structural 
flanking mechanisms are incorporated in this model, and the roles of both in limiting the attenuation 
of the duct lining were demonstrated. This model will be briefly described in the next section. 

2.3.1  A predictive model 

 
 

Figure 6. An acoustically lined duct in a reverberant enclosure, with flanking paths shown 



 

The arrangement of acoustically lined duct and reverberant enclosure is shown in Figure 6. The 
breakout/breakin and direct structural flanking paths are shown. This situation is about the most 
basic that can be considered, whilst still retaining the essential features of the flanking processes. 
Coupled structural/acoustic waves in the lined duct are modelled by the use of a Rayleigh-Ritz 
variational formulation involving three structural degrees of freedom and three acoustic degrees of 
freedom. This model can accommodate both “predominantly acoustic” coupled modes, where most 
of the power flow is in the fluid contained in the duct, and “predominantly structural” coupled modes, 
in which most of the power flow is in the duct walls. The latter type of mode is responsible for direct 
structural flanking, while the former mode type can play its part in the breakout/breakin or radiation 
bypass flanking mechanism. (Astley is responsible for the main part of the theoretical formulation.) 

Acoustic breakout is modelled in much the same way as was outlined in Section 2.2. Modelling 
breakin directly is less straightforward, so instead the acoustic Principle of Reciprocity is employed, 
with a point monopole within the duct as shown in Figure 6 and an observer in the reverberant 
sound field within the enclosure. A series of coupled modes (of both the predominantly acoustic and 
predominantly structural types) is matched to this point source by using appropriate matching 
conditions and a weighted residual procedure. This ensures that both flanking mechanisms are 
included in the formulation. It is straightforward to compute the mean squared sound pressure in the 
reverberant sound field surrounding the duct if the direct sound field contribution from the duct 
radiation is neglected. (Otherwise the direct field could be included, but at the expense of a 
considerably more involved analysis.) When the source and observer points are interchanged, the 
acoustic breakin sound pressure level from the reverberant sound field is readily calculated. 

2.3.2  Some typical results for flanking transmission in a square section duct  

                                                                     

Figure 7. Axial sound pressure 
level distribution at 1.6kHz in a 
300mm square section duct with 
0.58mm galvanized steel walls, 
having a 53mm glass fibre lining 
on all four walls; ——, predicted 
sound level in flexible walled duct 
with all mode types; — —, 
predicted from least attenuated 
mode only; , measured data. 



 

Some representative predicted and measured results are shown in Figure 7, for a frequency of 1.6 
kHz. This frequency was chosen because it is close to the peak in both the measured and predicted 
attenuation rate along the duct, and would therefore be likely to demonstrate flanking effects most 
effectively. The predicted attenuation rate is rather higher than that evident in the measured data 
mainly because, at this frequency, the number of degrees of freedom in the trial function used in the 
Rayleigh-Ritz formulation gives rather limited resolution of the structural/acoustic mode shapes, and 
correspondingly of the axial wavenumber. Even so, the agreement is reasonable. However, the 
main points to be noted are:  

(i) the sound pressure level falls off linearly with distance up to about x = 1m, after which it starts to 
level off and reaches an almost constant value at x ≈ 3.5m  
(ii) for distances greater than about 1m from the source, the least attenuated mode assumption is 
profoundly unsatisfactory in predicting the axial sound pressure pattern 
(iii) where breakin is neglected, the predominantly structural mode does create a plateau caused by 
direct structural flanking only, but at far too low a level; and the value of the structural loss factor η 
determines the axial decay rate of this “structural” type mode (the undulations at the beginning of 
the plateau region are interference patterns between the “acoustic” and “structural” mode types, 
since they have similar magnitudes at this point) 
(iv) the prediction including breakin, taking into account all mode types, agrees best with the 
measured data and offers convincing evidence supporting the assumptions on which the model is 
based. 
 
 

                                      
           
Figure 8.  Axial sound pressure level distribution at 500 Hz in the experimental duct of Figure 
7; ——, predicted sound level in flexible walled duct with all mode types, including breakin; 

, measured data. 
 
 



 

Predicted and measured data for the above duct at a frequency of 500 Hz are plotted in Figure 8. At 
this lower frequency, the trial function is much better able to cope with the mode shapes etc., and 
agreement between prediction and measurement is quite acceptable. 
 
 
3      BENIGN ASPECTS OF DUCT WALL BREAKOUT 
In this section the two useful manifestations of duct wall breakout, previously mentioned, are 
discussed. 
 
3.1  “Natural” attenuation in unlined  ducts 

3.1.1  A predictive model 

                   
            

Figure 9.  Power flow in an unlined duct passing through a reverberant enclosure. 
 
This problem was suggested to the author by Ballagh24 and the results of an investigation were 
reported by Cummings7. The duct arrangement is shown in Figure 9. An unlined duct passes 
through a reverberant enclosure, and sound power W1 enters the duct from the left. Sound power 
Wd is lost by dissipation caused by structural damping in the duct walls, and breakout sound power 
W0 is transmitted into the reverberant enclosure. Breakin sound power Wi enters the duct, splitting 
equally between inlet and outlet, and the remainder of W1 (W2  = W1 - W0 - Wd), together with Wi/2, 
leaves the duct to the right. The treatment of this problem is somewhat akin to the flanking problem 
in Section 2.3, though it is considerably less complicated because (i) there is no internal acoustic 
lining in the duct, and (ii) there is no need to account for “structural” type modes in the duct (even 
though they would exist), since they would play only a small part in the breakout process.  
 
Sound power balance equations are established, and solved by means of a somewhat involved 
iterative process. The Principle of Reciprocity is (as in the flanking problem) again employed to find 
the breakin sound power straightforwardly. There is a net attenuation of sound within the duct from 
inlet to outlet, since a part (Wd) of W1 is lost to structural damping in the duct walls and a further loss 
(W0) occurs by breakout. Only a part (Wi) of this returns to the duct interior, and of this only half 
leaves via the duct outlet. It is assumed in the formulation7 that the axial decay rate of sound power 
within the duct is constant along the length, though in reality this would be unlikely to be the case. 
Not only the structural loss factor of the duct wall, but also the absorption characteristics of the 
surrounding reverberant space, are taken into account in the predictive method, which enables the 
average axial loss in sound power in dB/unit distance to be found. 



 

3.1.2  Representative results 
 

                    
 
Figure 10. Natural attenuation rate in a 300mm square duct with 0.91mm galvanized walls; 
——, predicted attenuation rate with breakin, η = 0.15; — —, predicted attenuation rate 
without breakin, η = 0.15; , measured data (Nelson and Burnett25). 
 
 
Some illustrative results, plotted as attenuation rate ∆ (in dB/m) versus frequency, are shown in 
Figure 10. The experimental data were taken by Nelson and Burnett25, and appear to be unique 
among unlined duct attenuation measurements in that the reverberation times of the test chamber 
were recorded. Consequently, these data were suitable for comparison to results from the predictive 
method employed, since this required knowledge of the “room constant”. It should be noted that 
natural duct attenuation was not the phenomenon primarily studied by Nelson and Burnett, and that 
it is, to some extent, fortuitous that their data can be used to infer values of natural duct attenuation. 
(It is also, no doubt, a result of meticulousness in their recording of relevant data.) 
 
The most obvious feature of the results in Figure 10 is the series of very prominent peaks in ∆, at 
frequencies which – not surprisingly – turn out to correspond to transverse resonance frequencies 
of the duct walls. The highest peak is around 50 Hz, and the measured peak attenuation rate is 
about 2.8 dB/m, with the predicted figure (with breakin) being about 4.3 dB/m. The agreement 
between these values is good, considering that the measured data were not specifically intended to 
be used for this purpose. Without breakin, the predicted peak attenuation is about 15 dB/m, 



 

illustrating the very significant effect of breakin – together with the absorption characteristics of the 
enclosure – at this particular frequency.  
 
A salient point here is that dissipative silencers of the type commonly used in HVAC duct systems 
would only have an insertion loss of about the same magnitude – at this frequency – as that 
afforded by the unlined duct in this situation! At the lowest duct wall resonance frequency, there is a 
quite respectable natural attenuation rate over a frequency range of about one octave. And this is at 
no extra cost. Admittedly, the natural attenuation rate tends to fall off as the frequency rises, though 
the peak values are still significant. However, the acoustical engineer involved in the design of 
HVAC systems can, in principle, select duct configurations (the two transverse dimensions and wall 
thickness, for a given duct material, being design parameters) to give low frequency peaks in duct 
attenuation where they are needed. Clearly, this should not be done at the expense of (say) office 
personnel who happen to work in a building space selected for a high degree of breakout 
absorption – plant rooms would be much more appropriate. 
 
3.2  Breakout and attenuation effects in permeable-walled hoses 

Woven fabric hoses with porous walls are manufactured by various companies such as Westaflex in 
France and Nihon Sekiso in Japan. They are widely used – as mentioned in the Introduction – in the 
air intake systems of automobile engines. Significant sound power is actually dissipated in the walls 
of these hoses, as was shown by Cummings and Kirby26. And some of the sound power incident 
from the engine is radiated to the exterior. The author has heard a rather cynical suggestion that 
this feature might be advantageous in intake noise test methods where the intake noise is 
measured at a given distance from the air inlet, since a part of the intake sound power emanating 
from the engine could then be radiated, through the tube wall, farther from the measuring 
microphone than the air inlet! It is, perhaps, unlikely that this is the main reason for the popularity of 
porous hoses, since radiation from the duct wall is likely to be somewhat directional, toward the air 
inlet (see that results of Cummings18), and this effect could cancel that of distance. In any case, the 
radiated sound power levels appear to be significantly smaller than the incident levels. 
 
The prediction of the acoustic performance of porous hoses is dependent on knowledge of the wall 
impedance as a function of frequency. This is difficult to measure directly, as concluded by Park, Ih, 
Nakayama and Kitahara27, who investigated measurement techniques in detail and presented their 
own model for prediction of the TL of these tubes. Park, Ih, Nakayama and Takao28 also reported 
an “inverse estimation procedure” for the wall impedance of porous hoses. By contrast, the wall 
impedance in the work of Cummings and Kirby26 was derived by a rather crude procedure whereby 
the wall impedance used to predict the axial sound pressure distribution measured in a porous tube 
was adjusted to yield a “best fit” to measured data. 
 
3.2.1  A predictive model 

The predictive model of Cummings and Kirby26 will be briefly described here, since it is more 
comprehensive that that of Park, Ih, Nakayama and Kitahara27. In the former model the external 
sound field is coupled to the sound field inside the porous tube, whereas in the latter formulation, 
the external radiation impedance is ignored. In the model of Cummings and Kirby, the sound field 
within the tube is divided axially into “cells”, and conditions of continuity of acoustic force and 
volume velocity between cells are imposed. The sound pressure in each cell is assumed 
axisymmetric and is represented, in the usual way, by a zero order Bessel function. The exterior 
radiation impedance surrounding the cells is, however, permitted to differ between cells to allow for 
the radiation interaction between cells (modelled by a mutual radiation impedance formulation). 
Consequently, the interior wall impedance on the cell surfaces varies along the tube even though 
the impedance of the tube wall (defined as the quotient of sound pressure differential and the 
inner/outer average radial particle velocity, divided by the characteristic impedance of air) is 
constant along the tube. (It is assumed here that the tube wall can be assumed to have an 
impedance that is independent of its extent and mounting conditions, i.e., it behaves as though it is 
permeable but structurally rigid.) An iterative scheme is employed to find the internal sound 
pressure distribution inside the tube. At the first step, the exterior sound pressure is assumed zero, 



 

and the interior sound field is found. An approximate distribution of the exterior sound pressure is 
then found, and this is used in the next step to refine the interior sound field. This process is 
continued until the solution converges. It is possible to neglect coupling effects between the interior 
of the tube and the exterior region by simply putting the external sound pressure equal to zero, i.e., 
truncating the iteration process after the first step. 

  Sound power flows and a control volume (delineated by the dashed line) are indicated in Figure 
11, in a system where sound is incident from a source at the right-hand end of a porous tube, which 
is terminated by a ρc impedance (in the form of a semi-infinite rigid tube) at its left-hand end. One 
may write sound power balance equations: 
 

    Winc = Wi – Wr – Wt ;   Wdiss = Winc - Wrad .  (4a,b) 
 

Here, Wi is the incident sound power, Wr the reflected power, Winc the power incident on the tube 
walls from the inside, Wrad the externally radiated power, Wt the power transmitted toward the 
termination and Wdiss the sound power dissipated in the walls of the porous tube. 

 

Wrad

Wdiss Rigid tube 
Wi 

Wt Winc Sound  
source 

Wr 

Permeable tube

Control surface

Figure 11. Power flow components in a section of permeable-walled tube. 

 

Two TL definitions would seem to be appropriate here: 
 

   TL = 10 log(Wi / Wt)   and   TL = 10 log[Wi / (Wrad + Wt)] .  (5a,b)  
 

Definition (5a) relates the transmitted sound power, in the tube, to the incident sound power and is a 
measure of the effectiveness of the porous tube as a silencer, without reference to the radiated 
sound power. Definition (5b) takes account of both internally transmitted and radiated sound power. 
The usual breakout TL definition appears to be of lesser interest in this context. 

In the work of Cummings and Kirby26, a perforated aluminium tube was studied in order to verify the 
predictive model, prior to investigations of representative porous fabric tubes. The wall impedance 
of the aluminium tube, as a function of frequency, could be calculated to good accuracy, thereby 
removing one possible source of uncertainty in comparisons between theory and measurement. 
Predicted and measured data of the internal sound pressure distribution were in excellent 
agreement for the aluminium tube. 



 

3.2.2  Some results 

   

(a) (b) 

Figure 12. Predicted, —— (with coupling to the external sound field), - - - - - (without 
coupling to the external sound field), and measured,  , axial sound pressure distributions 
in (a) the aluminium tube at 200 Hz, (b) the porous fabric tube at 250 Hz. 

In Figure 12 are shown predicted and measured data of the sound pressure inside the aluminium 
tube and a typical porous fabric tube. The sound was injected at one end of the tube, and the other 
end was terminated by a rigid plate. The coordinate x in both plots is the distance from the rigid 
plate to the measurement point in the tube. The predicted curve in the case of the fabric tube is 
based on the “best fit” wall impedance, whereas the appropriate theoretical value of the (space-
averaged) wall impedance of the aluminium tube was used. Predicted curves both with and without 
coupling to the external sound field are plotted. It can be seen that internal/external coupling is very 
important in the case of the aluminium tube, and that taking this into account yields excellent 
agreement between prediction and measurement. Internal/external coupling is much less important 
in the case of the fabric tube, though it is not completely insignificant. In fairly short tubes, it is 
probably justifiable to neglect it for typical materials, as was done by Park, Ih, Nakayama and 
Kitahara27. Agreement between the predicted and measured sound pressure pattern in the fabric 
tube is good, given that considerable inhomogeneity in the wall impedance would be expected in 
this type of material27.    
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Figure 13. Predicted transmission loss, according to two definitions, for a porous hose. 



 

Calculated TL plots – from equations 5(a,b) – are shown, for the porous hose (of length 776mm), in 
Figure 13. It can be seen that the hose is very effective as a duct silencer, particularly at the lower 
frequencies, where the TL from equation (5a) exceeds 40 dB. The TL values from equation (5b) are 
lower, but are actually an indication of the extent of power dissipation in the tube walls, since Wrad + 
Wt is a measure of the difference between the net incident power, Wi – Wr, and Wdiss. If Wdiss → Wi – 
Wr, then TL → ∞. One can see, from equations (4a,b) and the lower plot in Figure 13, that by far the 
greater part of Wi is dissipated in the duct walls. This is an indication of the effectiveness of porous 
tubes as duct silencers. 
 
 
4      CONCLUSIONS 
In the various – rather specialized – types of duct and applications described in this paper (all of 
which involve acoustic breakout effects), there are many very interesting physical phenomena 
evident: for example, the vibration of (in some cases) rather complicated structures such as flat-oval 
ducts and distorted circular ducts, structural/acoustic interaction, coupled structural/acoustic modes, 
sound radiation from structures with (in some cases) complex vibration patterns or acoustic source 
distributions and breakin transmission from reverberant spaces to ducts. There is also a varied 
range of mathematical techniques appropriate to the prediction of the various effects of interest 
(breakout TL, radiation efficiency, duct attenuation, etc.): approximate analytical solutions for 
idealized systems, variational techniques, numerical methods for field problems such as finite 
element methods and finite difference approximations, Gaussian quadrature in both finite element 
methods and the integrations required in radiation problems. 
 
Fairly basic predictive methods can, in many cases, give surprisingly accurate results which are 
sufficient for most engineering design purposes. These are, however, at their best when based on 
more complete models which can be systematically simplified.  
 
On the basis of the evidence presented here, there is little doubt that duct wall breakout is more 
often a problem than a benefit. However, a quantitative understanding of the various phenomena 
involved can enable the nuisance aspects of breakout to be minimised or even completely 
eliminated. And there are certain situations or applications in which breakout – and/or its associated 
effects – can be exploited, by careful design in an economical way, to bring about very worthwhile 
degrees of noise reduction. 
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