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ABSTRACT

Any analysis of the physics of bowed string dymanics must consider in detail the nature
of the friction between bow and string. For example, the simplest model of friction in
which the opposing force is independent of the sliding speed, will predict steady slip rather
than self-excited vibrations. The friction law is thus critical to a realistic model of the
bowed string. An empirical friction law is proposed which is a function of both sliding
velocity and acceleration. The effect of this law in the generation of self-excited vibrations
is demonstrated for a single degree of freedom (spring-mass-damper) system with various
levels of damping. This suggests that, for sufficiently energetic excitation, vibration rather
than steady slip will occur, even for highly damped systems. The argument is extended
to multj degree of freedom systems (bowed string) to analyse the effect of modsl damping
and friction law on the relative excitation of modes, and thence to decribe the influence of
bowing conditions on timbre.

1. INTRODUCTION

To siraplify the analysis as much as possible, but retaining the essential features, the string
is modelled as a block, attached to a rigid wall by a simple spring and dashpot. The system
is driven by the frictional force between the string and bow: a simple one degree of freedom
structure with a non-linear excitation term. The configuration is shown in Fig. 1. The
governing equation for this eystem is

mz + r2 + 22 = F(z, %), ' (1)

where m is the mass of the block, s is the spring constant and r is the damping coefficient.
The frictional force is given by F{(z,z). '

The simplest model for friction (Coulomb’s law) assumes that the frictional force is inde-
pendent of the sliding speed. However, there are many instances, including bowed string
dynamics, where this model does not give predictions which have the correct quality. The
observed phenomenon is that a small initial disturbance in the string-bow system can be
amplified by energy transfer from the bow to the vibrating string, even under significant
levels of damping.
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Smith [1] showed that an important factor was the friction induced heating and the effect
it has on the rosin. Other investigators have shown that there is a velocity dependence,
and Lindop and Jensen [2] demonetrate this computationally based on a qualitative under-
estanding of surface interactions. The experimental results of Wang [3] show “hystersis™ for
relative velocities near to zero. As the relative velocity approaches zero, the frictional force
rises to local maximum and then begins to fall. It does not reach zero until the relative
velocity has actually changed sign and then it finally reaches a lower minumun than the
initial maximum. Hunt et af [4] also noted this effect and concluded that the frictional force
was dependant on another variable besides velocity, and proposed that this be acceleration.
The model presented has been constructed to match these results qualitatively.
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Fig. 1 Friction driven spring-mass-damper system.

2. THE PROPOSED FRICTION MODEL

It is well known that the elastic limit for & microscopic piece of material is far higher than
for the bulk material, and the frictional contact area is comprised of many small contacts
on the surface irregularities. Thus it would seem reasonable that the two contacting bodies
could move & small distance relative to each other, without disrupting the temporary bonds
between them, and the opposing frictional force would be predominantly due to the elastic
-force applied by the stretched irregularities. Such bonds would remain unbroken for a period
of time equal to the maximum extension of the bond divided by the velocity. For very low
relative velocities, this {ime period could introduce a hysteretic effect [A J McMillan 5,
whilst for moderate velocities the frictional force might be expected to increase in accordance
with the increase of the number of bonds being broken in a time period. We refer to this
quantity, 7, as the “characteristic period” of the interface.

The mathematical model proposed considers frictional force as a function of slip velocity and

acceleration. Given that the bow speed is vg, the relative velocity of the sliding surfaces vg
is vg = £—vp. If the bow is taken to have constant velocity, the relative acceleration is the
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same as the instantaneous acceleration of the surface of the string, 2. Now, for reasonably
high slip velocity, the model should predict Coulomb’s law, whilst for velocities close to zero
stick type behaviour should be manifest. Thse two types of behaviour are introduced by
having two parts to the friction function;

o 2 REk
Fi{vg,%) = —pamg— arctan( |=l"’), (?)

which approximates to F} = Fugmg for large and steady slip velocities, and
&

Fi(vr,2) =mg{ vp—ir/us’
sgn(Z)u, sin(vg + @), otherwise.

ifegn(E)vp < G or > —— 2[2[1

(3)

In the above equations y, is the coeflicient of static friction, uy is the coefficient of kinematic
friction in the Coulomb friction regime and  is the “charateristic period” of the interacting
surfaces, which determines the “width” of the quasi static friction region. In addition, ® =
arcsin(pg/ps,) and 02 = py(w — &)/2r. The overall frictional force is given by F(vg,Z) =

Fi(vr, %) + Fa(vr,%). Fig. 2 chows this as graph of frictional force versus relative sliding
velocity for & mass sliding with sinuscidal motion, = 0.5 x 10~8 5in(2001), relative to a
surface. The shape of this graph compares well with the experimental results presented by

Wang.
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Fig. 2 Friction force vs sliding velocity.
3. THE FRICTICN DRIVEN SYSTEM

It is convenient to use a non-dimensionalised form of the governing equations;

- . 2 -2
F+2vE4+ £ = ——arctan —
T l%|#

i
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_%i_?' if sgn(2)(z — A) < 0 or > 2)i|F; ©
- . 4
E::](;) sin ((" — ?iz =) + ‘I’) , otherwige, .

Here £ = %ﬁ is the non-dimensionalised displacement, 7 = 1-1/% is the non-
k B
dimensionalised characteristic period, and the other two independent variables are » =

;ﬁ and A = ;%1 / % . From this point the over bar notation is dropped.

We write the right hand side of equation (4) as the functional F(i(t),£(2)):
£ 42w + 2 = F(t). (5)
H the system is started from rest at t = 0, then

o(t) = j ot - YF(), (6)

o

and g(t) = Le~**sin(wi}, where w = /1 — 2. H is convenient to define two functions
1 t
SOY(t) = / D coslu(t — D} F(E)d and SO(t) = / 0D ginfu(t — )} F(i)di.
0 0

Then,

(1) = SM() - 55(2’(:) and  Z(t) = ("—2 - w) S3(1) - 20502} + F(2).

w

These coupled integral equations must be solved iteratively. We assume that F(1) may be
approximated by F(t) = F; for (j — 1)At < t < jAt, for sufficiently small time steps A%.
Then the integrals $()(¢} and S$()(t) may be written in terms of their values at previous
time steps; ; '

S,El] = Tzsg(‘l-)l -n S}":)] +(Ts + T3)F; @

and 7
S =75, + TSP, + (T, - T)F;, ®)
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where,
Ti = e~*® sin(wAt) T; = e7¥2% cos(wAt)
Ty = we 2 gin(wAt) T, = wli- e vat cos(wAt)] . (9)
Ts = ve 2! sin{wAt) Ts=v[l- gt sin(wAt)]
To iterate, start by putting F; = F;_, and use this to calculate £ and #. Then recalculate
F; based on these values. When the iteration has converged, reset S} and S(2); only the
most up to date value of these needs to be stored. The values for F; and £ at ¢ = 0 are

calculated interatively, based on setting the block velocity £(0) = 0. In the first iteration,
the block acceleration (0) is taken as zero.

So far we have solved for initial conditions z(0) = 0, and Z(0) = 0. For z(0) = £, and
#(0) = v, we may write #* =& — vy and 2* = z — z; — vpi, s0 that

B i + 2t = F(t), (10)

where F*(t) = {F(t) - Qvvy — (zo + vot)}. The problem can now be solved exactly as
before, but in terms of x* and F*.

4. RESULTS OF THE NUMERICAL SIMULATIONS

In the results presented in Figs. 3 and 4, the outer loop represents self-excited vibration; the
fixed point represents a condition of steady slip at contant velocity. When initial conditions
are sufficiently close to the outer loop, the motion of the string will increase so that the
trace on the phase plane will spiral out to meet it. This represents an increase in the total
energy in the string; the source of this energy is the bow. It is transmitted to the siring
by frictional force, at a rate great enough to overcome energy losses through damping. If
the initial conditions are close to the fixed point representing steady slip, the trace will
gpiral in to meet that condition. In this case the friction and damping combine to act as a
mechanism for removing energy from the string.

The results presented in Fig. 3 are for a system with v = 1072, A = 3.0, r = 0.1 x /10 and
® = 1.0. The unstable limit cycle is rather small, and in particular, does not enclose the
point {0,0), which might be considered as the “usual initial condition”. One might consider
this system to be prone to self-excited vibration, with a frequency of about 0.96 rad s™!.
The results for a similar system having greater damping, + = 10~%, are given in Fig. 4.
In this case the unstable limit cycle iz very much larger and encloses the point (0,0), so
is prone to steady slip behaviour. However, given sufficiently energetic initial conditions it
can be made to self-excite, with frequency 0.98 rad s~!, and this outer loop is rather similar
to that in Fig. 3. Since the unforced frequency of both of these systems is 1 rad s—!, the
friction excitation mechanism is “pitch flattening”, & phenomenon described by Mclntyre
and Woodhouse [6].
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In both cases the step in the outer loop occurs when 0 < sgn(£)(2 — A) < 2|2}r, i.e. when
the relative velocity is passing though zero and the friction becomes “quasi static”. The
graphs presented show only one cycle; subsequent cycles have similar, but not identical
paths and durations, and the position of the step can shift along the top surface. In some
cycles there may be more than one step. Although the motion is not strictly periodic, it
is clear that the phase plane paths are confined to lie within a finite band, so it may be
classified as “quasi-periodic”. This is a consequence of hysteresis in the friction law.

3 )
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Fig. 3 Phase plane plot for v = 1072, Fig. 4 Phase plane plot for v =10-2,
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F Holes and Bass Bar Effects on Plate Tuning

Anne Honssay
Drancy, France

In this study, measuring the frequencies has been used as a tool to guide the working process of
the next instrument being built.

While making the back and belly of an instrument of the violin family, can the maker anticipate
what tuning is to be obtained on the finished front ?

Traditionnally, one does not retouch from the inside the thicknesses ot the table after the f holes
and bass bar are done, in order to obtain the nice smooth and regular intérnal curve that is usually
aimed for. That is why the maker must know in advance the effects the cutting of holes and the
addition of bar will have on the frequencies of modes, in order to achieve the final tuning he
wishes, between the modes of the front and with those of the back.

In that way, 3 violins, 4 violas and 3 cellos were measured during their making, between 1985
and 1990, with a very simple equipment, thanks to Carleen Hutchins’s directions given in CAS
NL #39, 1983.

Some conclusions are given on the influence of holes (position, shape and cutting) as well as of
the bass bar (gliing and shaping}, on the tning of the instrument’s table.

This study has been conducted in the course of making the following 10 instruments: violins n°6,
7 and 8, viplas n°2, 3, 4 and 5 and cellos n°1, 3 and 4. Cello n°1, made in 1981 has in fact had a
second front made for wich was built after cello 3 & 4. The musician playing it had a bus accident
and the front had been severely damaged, needing replacement. '

The method used is the one indicated by Carleen Hutchins 10 measure modes 1, 2 and 5 with the
help of a frequency generator, a high speaker, and we used powdered sugar or copper sulphate to
visualize the modal lines, thus checking wich mode we were up to. The shapes were very
predictable and regular whith traditionnal archings and thicknesses coherent and symetrical as’
Sacconi describes them.

The goal we were aiming for was the evaluation of the effects of F holes (FF) and bass bar (BB)
on those 3 modes, to anticipate the change of frequency they were going to imply, while working
the thicknesses on the next instrument.

As a matter of fact, the process of making the instruments was made in the following order:

. making the ribs

cutting the outline of back and belly from the ribs’s shape

camng the outside archings of both plates and insert the purfling

carving the inside of back and belly and thickness them to a certain tumng

. cutting f holes

. gluing and shaping bass bar

. getting the final tuning between back and front.

N AW~
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To obtain the regular inside curve of the instrument, this order schould be kept without touching
the table’s thicknesses after stage 4, otherwise one cannot control any more the shape of the
internal volume of the front.

transverse section:

Moreover, to chenge frequencies significantly after FF and BB means scraping wood in an
irregular manner, wich damages the FF, and leaves dirty ridges of wood along the bass bar and at
its end. That does leave irregular stiffness points and the maker knows that empirically.

We have measured the frequences of modes 1, 2, § before, after and during stages 5 (FF) and 6
{BB) of the working process:

linstrument belly without ff and bb belly with i cut belly with T and bb

1 2 § 1 2 § 1 2 S
vielin n° 6 63 182 389 92 170 333 93 175 n
viplin n* 7 90 170 356 82 160 307 90 175 153
violm n° 8 86 164 342 79 153 304 86 162 349
violan® 2 83 122 297 68 115 ry) 75 132 301
violan® 3 63 123 279 58 116 239 54 128 277
violan® 4 62 107 253 56 102 229 68 115 265
violan® 5 68 113 254 60 104 218 71 111 256
cellon” 3 29 52 117 27 51 102 32 59 126
cellon® 4 30 53 117 27 52 103 )| 63 122
cello n® 1 36 57 141 32 53 117 37 62 143

If one consider Carleen Hutchins’s proposal of being within 1 to 4 % to consider to be « in tune »
or « equal» in frequency, one seces here that the differences are quite subtle between the
instruments, wich are made on the same mould (exept for violin n° 6) and with close archings for
each category.

Comparison of the effect of ff and of the cumulated effect of ff + bb tells us more:
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effect of ff + bb)

instrument helly withoat fT and bb effect of M

1 2 5 1 2 5 2 5
violinn® 6 65 182 389 27 -12 -56 28 -7 -17
violin n°® 7 90 170 356 - -8 -10 -49 0 5 -3
violn n® 8 164 342 -7 -11 -38 0 - -2 7
violan® 2 83 122 297 -15 -7 -26 -8 10 4
violan® 3 63 123 279 -5 -7 -40 1 s -2
violan® 4 62 107 253 -5 -5 -24 [ 8 12
violan® 5 68 113 254 -8 -9 -36 "3 -2 2
cellon® 3 29 52 117 -2 -1 -15 3 7 9
cello n® 4 30 53 117 -3 -1 -14 1 10 5
cellon® 1 36 57 141 -4 -4 -24 1 5 2
The weight of the plate was recorded at each step:
instrument weigths of the front in weight in of:

plain with T | with bb fl bb ff+bb
violin n°® 6 92 88 90 4 2 -2
violinn® 7 76 73 79 3 6 3
violin n® B 72 T 75 1 4 k)
violan® 2 106 105 112 1 7 6
viola n® 3 103 100 107 3 7 4
viola n® 4 89 85 92 4 7 k)
viola n® 5 88 87 94 1 7 6
cellon®3 513 480 -33
cello n® 4 490 485 517 5 32 27
cello n® 1 565 592 27

For violin n"6, the front was pretty heavy to start with, having been left thicker and heavier. The
consequence was that the cutting of holes took 5 g of wood off. The back had a fifth mode tuned
at 350 Hz, and to get the table closer, the bar has been thinned downuptolg,wuhout going
lower that 372 Hz. The bar has been worked a lot sideways and in its cuvature to evoid to affect
too much its strength , but the result was absurd with a weight of 2 g and not the right tuning,
Oxzte could conclude here that FF and BB could’nt compensate for that table wich was too stiff in
the fifth mode to have it an octave higher than the second mode,

i Proc.1.O.A. Vol 19 Part 5 (1997)
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In this instrument, the ff holes had the effect of lowering the second mode by 12 Hz and the bar
had raised it by 5, giving at the end the 175 Hz that were wanted: The tuning of mode 2 with the
back was obtained, wich gives a easy response on the finished instrument. Was it possible to get
the same result on the next violin n° 7 if we were going to thin down the table to get the fifth
mode an octave appart ? What frequency was going to have mode 1 7

For violin n°7, it was decided to lower the 5th mode to 356 Hz before the ff holes would be cut,
imowing that it had been possible to lower it down 56 Hz with ff and go up 39 Hz with a very
small bar in violin n° 6.

At the same time, a detailed study of the cutting of f holes of violin n° 7 was then undertaken in
order to understand how their shape and position influences the rigidity of the table:

Iﬂg of work weight (mode] imode2  [mode$

before ff and bb g 90 170 35S
drilled top holes at diameter 5.5mm id 90 170 362
drilied bottom boles at diameter 5.5 mm id 90 171 359
|Gxe saw eut from top to bottom hole left 75 86 167 330|
|fine saw cut from top to botiom hole right 75 83 163 3
[opening arms tow. bridge: 74 between ff 74 83 162 315
open. top holes up diagonally tow. centre 74 83 163 316
open. bott. holes down diag. tow. outside 73 83 163 32
widening the bottom holes tow. wing (£] 83 163 k] ¥
opening the bottom holes tow. the CC 73 83 161 312
widening the arms towards the CC 73 83 160 i)
|last opening of arm towards bridge 1mm 73 83 160 310
|finishing upper curve of top holes 73 82 160 309
| finishing bottom hole 73 82 160 308]

Nearly all the flexibility is given with a very fine sawcut made by a jeweller's saw from top to
bottom of the Fs. It is useful to note that the opening of the arms do not affect the tuning, so it
gives the chance to tune the helmholtz resonance of the body in widening the f holes, without the
fear of giving too much flexibility to the table. It must be understood that the FF were positionned
with the outside line of the arms lying along outside arching’s level lines, and that line was sawn,

The experience on violin n°7 was worthwile: the balance in mode 5 between ff holes and bb giving
a lowering of 49 Hz followed by a highering of 46 HZ. The tuning st 353 Hz can be considered as
a success ! Second mode was an octave lower at 175 Hz ( note F) and mode one between F and

F sharp.

"For cello n° 4, one first tried 10 compensate completely the effects of ff with the bass bar.
The table was thinned down to the following tunins and the work was recorded:
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‘Be of work weight |mode 1 |mode2 [mode5S

before i and bb 565 30 53 117
with 1T cot 27 52 103
with bb glued, not shaped 627 34 67 139
bb finished 592 3 63 122
reworked thicknesses (should'nt be done) _ 545 29 56 118
bar lowened 542 29 56 116
reworked thicknesses for lowering mode 2 528 29 54 114
lowered bar 522 28 53 112
varnished instrument:table taken off 29 58 119
bass bar taken off _ 24 48 9%
new bar not shaped 534 31 59 128
new bar shaped 529 30 58 125
3rd bar shaped 530 29 58 123

While working the back, one did not succed in having the aimed frequencies: {mode 2: 55 Hz,
mode 5: 119Hz). At that point, it was decided at least to tune the second mode, wich gives an
easy response, and Carleen Hutchins proposes it as & priority.

One sees the difficulties to get the right tuning when the tuning is not right before ff and bb.

The reworking was meant to lower mode 2, but we went too far in that direction, the mode 5
became too low and we had to take the front off the finished instrument to change the bar. We
then could see the effect of the dryed varnish on the modes. With the new bar, we did not try any
more to get the fifth mode to the same tuning as the back. At the end of the same year a sinking
of the table ocoured and the bar was changed again, with a bigger tension when it was glued.
Mode 2 and 5 are a semi-tone appart.

One can see that whatever effort is made to use the shaping of the bar to effect the ning, it is
always the fifth mode that goes down quite a lot, because of the situation of the bar on nodal line
of the belly. It was tried to do first a final height at the center of the bar, measuring the modes,
and then shaping progressively the arms: What happened is that mode 1 and 2 were practiquely
unmoved (2 Hz during the whole process), while mode 5 was lowered progressively.

For cello n° 1, the work of ff holes 1 was also studied. The tuning of the back, still on the
instrument, was recorded to be C (Ideally 65 / 130 Hz but it had been tuned by ear). So cne
planned to tune the table to that note. But the front was too stiff in mode 5 and was reworked
after fF and bb were finished. Mode 2 ended up « in tune » with the back at 62 Hz, but the fifth
mode was more than a semi-tone higher than the back’s.
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stage of work weight |mode 1 mode 2 mode 5

hefore ff and bb 513g 6 - 57 141
drilled bottom holes at diameter 6.5 mm id 36 . 59 141
drilled top holes at diameter 6.5mm 512 36| 75 59 141
fine saw cut from top to bottom hole left 512 35 ' 58 135
fine saw cut from top to bottom hole right| 512 L 58 13
opening arms tow. bridge: 157 between ff 507 34 58 131
hollowed the bottom wing from outside 505 M 58 131
open bottom holes 502 34 57 129
joining bottom holes to arms 501 33 37 129
finished top holes and joints with the armg 500 34 56 128
thicknesses reworked 32 53 117
after ffand bb 37 62 143

For viola n°5 and violin n°8, an expected effect on the tuning of ff and bb was aimed for, a
simple average of what as measured on the preceeding instruments of the same type.

instrument { aims with ff and bb |bb: elfect | ff: effect |plain table

1 2 3 1 2 5 1 2 5 1 2 5
violn n* 8 sz| 165] 330 8l 18! so[ -8 -10{ -50f 82[ 167] 330
violan® 5 ss| 110l 220] 14] 15| ss| -5 6] -35] 64 101] 200

¢ tabl - Rpe etouched. For the viola, the tuning of mode 5 at 220
szasunpossiblewrththat model (41 cm long, and pretty narrow). It may be worth trying
around 65 / 130 / 260 Hz. The plain table tuning started up at 67 / 111/ 256 Hz for a final tuning
at 71/ 111 / 256 to match the back on its fifth mode: 84/ 127/258.

The violin started with 85 7 164 / 344 before ff and bb. It got closed to what was wanted with
modes 2 at 162 Hz for both plates (E), mode 5 at 340 Hz in the front and 326 Hz in the back
{(between Eb end E#), and mode 1 was at 36 Hz in the belly (below E#).

In conclusion, we succeded to foresee a tuning on violins, but viclas and cellos were not as
predictable. Their models are more variable and the notes wanted may have been too low for their
sizes. The ff holes give flexibility to what the makers call the « pump effect » (mode 5) 4 t0 5
times more than the lateral bouncing (mode 2), and that, more in their length and diagonal cutting
of the arching than in their width. In violins n® 7 and 8 and in violas n° 3 and 5, ff and bb have
nearly been able to compensate each other’s changes of tune of modes 2 and 5. in cellos, the ff
holes practically have’nt affected the mode 2, while the bb sometimes doubles the frequency the
fifth mode had lost with the ffs. A reasonable choice in the height and shaping of the bar can
affect around 3 to 4 times more mode 5 than mode 2.
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