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l. TNTRODUCTION

The term impedance, universally identified by capital zetha (Z) was introduced in the electrical

field in 1886 by the famous English Physicist Oliver Heaviside to describe the voltage to current

ratio in a circuit comprising a resistor (R) and a inductor (L). (fig. 1),

R
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FigJ

It was a step forward to the Ohms law, soon extended to circuits including capacitors (C). The

impedance concept has proved to be very useful to relate any voltage to current ratio. It has had a

great development in electric network theory, as well as in other fields of physics including

acoustics.

A particularity of acoustics is that the “systems” involved in most acoustic problems, do

not have physically concentrated parameters as is the case of most electromechanical systems in

acoustics we have in general mechanical vibratory sources with concentrated parameters,

immersed in continuous media with distn'b'uted parameters in which the vibratory energy is

propagated by elastic waves that may reflect, diffracts, absorb or transmit energy in obstacles, or

develop sound sensations in living species through the ear mechanism.

The electro-mechanical-acoustical analogies is a very useful tool to describe acoustical systems

with concentrated parameters as can be the case of the Helmholtz resonators. The flow of
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acoustic waves through tubes and cavities are treated as mechanical systems with concentrated

parameters provided that its physical dimensions be small as compared with the wave lengths.

This is not the case in many acoustical situations where in dealing with waves it is

necessary to make appeal to the wave impedance concept and to phenomena better developed in

the electromagnetic field (as is the case of the acoustic shadows by barriers, based on the edge

diffraction theory of electromagnetic waves solved by Sommerfeldin 1896) and in particular in

the transmission lines theory.

We vu'll refer first to the concentrated parameters systems and then to electromagnetic

waves and transmission lines, using the appropriate analogies for the applications to acoustic

systems. In all cases we will consider linear and constant parameters, that besides of facilitating

the equations formulation coincides with most of the common physical phenomena and

processes.

2. GENERALISED IMPEDANCE

2.l.-G.en§r.aliss_d.imr&dflisesous&m

Life and Nature in its most general meaning'convey continuous process of propagation,

transmission and transformation of energy. The transfer of energy implies sources and receivers

and in most cases intermediate transmission systems.

Energy whatever its nature, can be defined and evaluated by the product of two factors,

related respectively with its intensity and capacity characteristics.

So we have the following pair offactors for the different kinds of energy.

Energy Electrical Mechanical Acoustical Electromag. Thennodin.

Factors V,l F.U p.Q Exl—l T.S (entropy)

Power(watts) Voltamp. N. m/s N/m2.mz.m/s Volt./m amp.m kcal/s
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As a generalisation of the impedance concept, the impedance of a system can be defined

as an intrinsic “operator” that transforms the applied excitation function (a) into a response

function, (r) representing respectively the intensity and capacity factors of the energy involved,

i.e.

Z = e/r

The power Wa “absorbed” (no reflected) by the system, being the product of the excitation by the

response, is governed bythe impedance

W, e.r 1

z c_ W. = =Zr’(wam)
r

N
I
"

The impedance controls and “measure” the response of the system, and is called its input

impedance

22.-Win

The linearity of the systems allows the application of the additive principle to simplify all

kind of excitations, and consequently of responses, to harmonic functions of time \u: and \yr of

the form

\y (or) = w cos mt =lw|cos (ml +tp) = Real lwl ej‘m‘“

and the impedance

2(0) = W_‘ = MeJ-(We—Wr) = [Zleje = R +j X

W! IV,

a vector to be represented in the impedance complex plane (fig. 23).
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r l . . . .
The Admittance Y = as the geometrical tnverston of a vector, corresponds to the vector 1/2in

 

the figurelb
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SJMPEDANCE ANALOGIES

3.l.- u te vste ' e ' Vec 'aa c ' ' a

_ The energetic processes involve phenomena of dissipative, inertial and potential nature . The ‘

power transmission through physical components is regulated by well known physical laws that

relate its particular reactions in said processes, Coulombt Hook, Newton, Ampere,Faraday and

Maxwell being the main names involved.

The dissipative phenomena being directly related to the response, and the kinetic and potential

one to its derivative and integral respectively, the following general equations can be established

Dissipative laws, w: = Aw,

 

Dynamic laws, “1‘ = B dw'
dt

. 1 do;
Pote tal laws, = —- —'"' W‘ 0 dt

The constants A B and 1/0 corresponds with physical system components deduced directly by

application ofthese laws to different fields,
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The next table shows the respective analogous components in the electrical mechanical and

acoustic fields

Component Dissipative Kinetic Potential Excit Resp.

8

Electrical Resistance, R

Mechanical Mech. Friction, lnertance,m Mec.Compliance,

R...

Acoustical Flow Resist.,RA Ac. Inertance, Ac. Compliance,

 

I When dealing with oscillatory functions and in panicular with han'nonics functions, the dynamic

and potential laws, as containing time derivatives and integral of the functions, have imaginary

components, d‘i’ldt =j (my and [Tilt = ‘P/jcu = -j ‘Wm.

Heaviside, applying the Cauchy operational calculus introduced an elegant procedure to solve

integro-differential equations mainly in the electric field by means of the operator p = d/dt and

Up = 1 dt.

For harmonic functions.

p=jco and 1/p=l/ju)=-j/m

If we go back to the original series electric circuit, withlumped R L and C components (Fig. 3),

. . V ' _ 'mt
excned by an harmonic toltage V — l Vl e’ _I-

i Z. R L

Vl :___:T
Fig.3

Fig.3
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The Kirckoft‘s‘ voltage law, V = VR + VL + Vc' gives V = R1 + L dI/dt + 1/C ildt and

applying the Heaviside operator p

V=RI+pLI+l/pC=l(R+pL+ l/pC)

and the input impedance results

Z;=V/I=R+pL+ l/pC=R+j ((DL- l/mC)

This is the well known electrical series impedance Z = R +jX = I ll em where

, X
lZI = JR' +XZ and arctge = —

R

The real and imaginary pans of the vector impedance, are related with the components of the

system, what makes possible to evaluate the response of the circuit, I = V/Z and the power

delivered to the circuit \v = vz/z = 212

By substitution of the corresponding components in each field, the following input impedance

are obtained,

Electrical series circuit: Ze = V/I = R +j(a)L - l/CL-J)

Mechanical series circuit: Z,“ = F/U = Rm +j ((1)111 - l/Cmm)

zA =p/Q = (F/S)/SU = z,,,/s2 = R,,,/s2 + j(w m/SlH/Cmsz)
=RA+j(c)MA-l/mCA)

Acoustical series circuit:

The acoustic components are deduced from the mechanical ones by dividing the Resistive and

lnenial components by the square of the surface (SE) to which the acoustic pressure is applied,

and multiplying by S2 the potential element or mechanical compliance.
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The units are:

/
Z( = Z = ———Ial’5 = ‘ , electric: ohm:

I a m p
,r .

Zn = 5 =M = Q," , mechanics ohms
U m

1 , I

Z‘ = E = M. = = A, Acoustic: ohm: or Ray] s/m"
Q m Is m m‘

,r 1
The Acoustic inertance, M‘ = if =

S’ m

ThA t' 1' c—c s1—""‘—m$—Xe cousrccompiance A— m. — N.m — N-B

(B = Bulk Modulus ofelasticity, N/mz)

(v, m’)
3.2- Djsm'humd pmmms svstgms' egg] 51's; waves and 'mpgdanggs

Condensed matter in any of its states and aggregation grades, contains the three basic

components A, B. C. involved in the transmission of energy, the difference being that these

components are spatially distributed, instead of concentrated.

Any physical perturbation in the continuum medium is propagated by waves.This is the case of

acoustics waves, that propagate mechanical energy transmitted to or through the medium by

matter vibration.

The acoustic hypothesis simplifies the medium to the isotropic non dissipative, linear and

homogeneous case, which facilitates the formulation of the physical laws of mass and

momentum conservation, that together with the Bulk elasticity modulus B = — results in

 

5V / V

the well known wave equation

V1111 =I/C: it!
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where \y isany variable defining the physical perturbation (displacement, velocity acceleration or

pressure time variations) and c is the speed of wave propagation c = (/B/ , o is the density

of the medium. i

The solution ofthis equations is a wave function of the general form

w (m) = w e'r” "‘
with complex constants: ‘

\V (amplitude) = I wl e”

l'(propagation constant) = o. +j[3

p (oscillation constant) = i + on

F and p, for the Acoustic hypothesis and harmonic excitation, reduces to T= jB, p = not and the 1

solution is written

Wt) = Wei-(“"9"”),
which defines for any spatial position ri an harmonic oscillation with time, and at any instant ti, a

spatial sinusoidal state of oscillation,

The variable w use to be the acoustic pressure! p because of the facility to meuure it through

microphones or hydrophones in fluids. In solids use is made of vibrometers to measure

displacement, velocity or acceleration.

The wave fronts definedby the surfaces of constant phase 1) = mt - [3r + q: = Const‘ depends on

the geometry of the excitation, resnlting in plane, spherical or cylindrical waves

 
For— =0 and c= d—r resultsc= 9dt dt B _ l
The is defined by the ratio of the acoustic pressure (excitation) to the

associate velocity of oscillation (response)

Z:

:
l
'
o

For‘he baSiculanwalegeometry, p(xt) = |P|e“‘""“"°’ and u(xt) = |U|e“‘"*‘“°’
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. . . 5 p 6 11
Th l eanzedE l t — = —e in u er equa ion, ax p 6‘

results in Z = p/u = pc, a real quantity

For other geometries the ratio p/u depends of r and [3 and is in general complex in the case of

3331mm the absolute magnitude on results

 

[pl Br , 1
IZI=—-= c% \VithtaB=—

luI p i] +B2r1 ° [3r

which corresponds to the vector diagram

Therefore c059 = B—r and Lil = pc cost)
1 + p’r’ M

For large values of Br (high frequencies or long distances) cos B—rl and the ratio = p c

coincides with the ratio Z = p/u in plane waves. _

The constant pm, a significant property ofthe medium is called theW

gubemediuml As

C=J§ Z°=pc=JpB

p, B are two distributed parameters of the medium related with the inertial and potential energy.

4. \VAVES AND TRANSMISSION LINES ANALOGIES

4,1: Electromagnetisfieldimmdance

Once more the development in other field as in electromagnetism, can be useful in acoustics.

The electrical transmission lines is a particular case of electromagnetic waves “guided” through

wires, at low frequencies.
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The electrical transmission lines is a particular case of electromagnetic waves “guided” through

wires, at low frequencies.

The electromagnetic waves vectors are the solutions of the Maxwell equations relating the spatial

variation of the Electric intensity field vector E (Volt/m) and the magnetic, H(amp.m).

VIE—I" = 0

v’H—t‘2 = 0}

With the propagation constant I” = = a +jB function of the field

distributed parameters g s u. The vectors E and H oscillate hartnonically with time as

corresponds to harmonic excitation of the field.

The solution for E and H are propagating waves of the form, E(xyz) = E 2‘”, Haw) = He”

the instantaneous values of E and H being E6.” and Hem .

The vectors E_ and H have different values and directions according to the type of wave

associated to the excitation. In the wave front, the vectors E and H, and the speed of propagation

v are orthogonal. E

 

H

In general the vectors EHv are not trirectangular and 6 wave impedances are defined in three

directions, 2,, = —— —, Z” = %and the opposites 2‘“,sz and Zzy.
z

- E
For perfect dielectric media or in vacuum, g = 0, and the ratio E = E = n , defines the

 

intrinsicWW,and I" = jc-JJ pa , the propagation constant.

In general, 11 g + jua and 1' Jmp. + (g + JO) 3).
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. i
For free space, uo = 4nx 10 7 Henry/m, ea = ? x 10" Farad/m

J T!

 

nu: ”° =120n n, we; 2 3x10“m/s
ea “LE.

 

When writing the Maxwell equations for uniform plane waves or TME (Transverse

electromagnetic) and choosing the eqUiphase plane yz, the equations have the form

fl

 

= ' ijHz = ZHZ
dx

UHZ = . (g + jwefliv = YE,
dx '

These equations are analogous to the equations for homogeneous electric lines

fl = -(R+jc)l.)l = 21
dx

dI .
—— =-(G + )0C)V = YV
dx

where Z and Y are the distributed series impedance and shunt admittance for unit length (fig. 8).

The pairs Ey HZ and El Hy (and the acoustics p u ) are equivalent to the pair V I in electric

lines with distributed parameter for unit of length RLG C, the parameters equivalencies being

HEPEL
gE—EG

SEBEC

These equivalencies between plane waves and electric lines together with the previous lumped

electroacoustic analogies, allows with some restrictions on wave length in: geometry, the

transmission of acoustic waves in open or limited spaces systems to be treated as equivalent

transmission lines in lumped parameters circuits
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5. ENERGY TRANSMISSION

).l.- u'v ce c'

The transfer of energy implies a source (active system) and a receiver (passive circuit, or load)

and in many cases a transmission system in between.

The receiver has been characterised, for any kind of energy. by a Dipole with its input

‘ excitation
impedance Zi=—— = iZi 5’3

response

To define the source, we go back to the electrical network theory and apply the Thevenin

theorem, (1883) that states that any active linear network is equivalent to a Dipole consisting ofa

generator with the open circuit voltage VS in series with its internal impedance Z, as measured

with all its sources in short circuit. (fig. 4a)

z
I; 5

£38
.2.“ E v, Ic V:

(a) (bi

Fig.4

Sometimes it iS convenient to use the equwalent dual current source Ic = 3‘ in parallel With the
r

l
admittance Y5 = 7 (fig. 4 b)

.\'
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5.2.-

For direct coupling between source and load the equivalent electrical circuit 'of fig. 5 holds.

where the voltage VS drives a current I through the whole circuit

 

Fig.5

The power delivered to the load Wc = Vcrl, can be solved in terms of both V, (the excitation

intensity factor) and the impedances Z, and Zc . It is straightforward from the circuit that

  

w: = V,.I Z
V W, = 2,11 = V,’ —‘,— = V} 2 watts 1=Z,/Z,

Z==7‘ (Z.+Z.) (1+1)

V
I = '

( 2, +2‘ )

i.e. the power “received” is a function of the ratio 2112, ‘

Differentiating Wc with respect to t and equating to zero, the maximum value of W: is for t = 1

2

i.e. for Z: = Z, (impedance matching) and (Wc)m__ = if? warts
e

The maximum coupling or impedance matching is of primary importance in the transfer of

energy. In acoustics is used in the positive ornegative sense according if it is desired to transmit

the maximum energy, as is the case of the ear mechanism, or to reflect or absorb the maximum as

in isolation systems. At the end, the energy not reflected has to be transmitted. transformed or

dissipated, the sink elements been the resistances
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5.3.- ‘ ' ' ' d'u V ' ' e

In most cases between the source and the load it is intercalated a transmission system that can be

generalised to be a tetrapole (fig. 6a).

2:

  

(b)
Fig.6

In the tetrapole are defined difi'erent impedances, The more importants from the point of View of

energy transmission are its Z0 and the input impedance Zn as a function

of the load Zn. ‘

2.; is an intrinsic characteristic, defined as the impedance seen in the primary poles when the ,

secondary is loaded with this same impedance Zn. Consequently Zo coincides with,the impedance ‘

of an “infinitive” chain of equal tetrapoles as represented in the figure 7. 1

v.t. v.1. j-_I:___ 1

(a)

 

(b) 1

Fig. 7 i

It follows directly from the chain that

20155: and 5.5; n
l 1 V2 1 Va OI

where y is the transmission constant. in general complex, 7 = a.+ jB , with a the attenuation

constant and B the phase constant. For Harmonic excitation [5 = k = w—
c
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The insertion of a tetrapole in the case of matched impedances, Zn = Z, = Z" is then equivalent

to a direct coupling with the voltage source attenuated to V‘ e"(fig. 6b). The transmited energy

results

we =—*e'=’
t

In the general case of the tetrapole loaded with Zc = 20 the input impedance can be evaluated by

the well known equation in network theory

2‘ chy +Z“ sh'y

Zc shy + Z0 chy

for Zc = 0 2,; = 2,: (short circuit input impedance) = 2., thy

Z]: = 20

for Zc = no 2.; = Z“, (open circuit input impedance) = 20 cthy

and the following useful relations are deduced

Z -Z 2-2ZO=JZ—“Z—m; ea: l0 0: o I:

2|!) ‘1’ 20 z0 +Zlc

i.e. lo and y can be obtained in terms ol'the short and open circuit impedances. Z.c and 210

5.4.-

The above relations defining Zn and y for symmetric tetrapoles, can be applied to transmission

lines with distributed series impedances Z = R + ij and shunt admittance Y = G + ij per

unit length of line, with 2., = JZ/Yand transmission constant, I JZY = 71 for a line of

length I, (fig.8)
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R/z U2 U2 R/Z _.— ——————— ——l

Fig.3

Therefore the transmition lines can be used as tetrapoles to define transmission systems with

distributed parameters and contribute to the impedance coupling between source and load by

varying the length ofthe line.

The input impedance of the coupling line will be that of a tetrapole with Zn and 1!,

Z =2 2‘ ch11+Za shy!

” 9 Z: shyI+Zo chyl

This equation leads to the followings with onlym or cth

Z 2: +Zotl'ry1 [mun = 20 Z‘crhyl+ 2,,
Zn = a

Z: thy] + Z, Z: +Zoclhy!

Because of the particular shapes of both functions [h and Eh. (fig. 9 a, b) it can be easily

visualized how 2,; varies with the lenght of the line and with the load 2:.
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Fig.9

I>>l, thyI—H, Zn —>Z° yl>>1, ciliyl—> l, Zu—alo

Z==0 Zu=Zothyl Zc=ao, Z.z=Zoclh~{l

6r ACOUSTIC APPLICATIONS OF IMPEDANCE ANALOGIES

6,1 wimpsdmnusmmlinz

In acoustics a common case is to have a layer of absorbing material on a rigid surface, (fig. 10 a).

V4

    (b)

Fig. 10

[n this case ZCE co and Zl2= Zn cth 1!. In order to have 2.15 Zn, 1 has to be large.
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To reduce the thickness of the layer and to have good coupling with the low impedance of the air

use is made of an inten-nedium ear space equivalent to an open line (ZCE 00), with I = U4 (fig.

10 b) what makes 2,: = 0:

y°l=j|31=j2 5:1; and Zn=chthj1=Z2 11 =0
c 4 “ flung:

 

by adjusting I a U4 , Zlz a Z0, and the incident acosutic wave will practically have not any

reflection. The system have a maximum selective absorption, for frequencies multiples of M4.

6.2.- t'cw ve a ‘ ‘ e "R

 

To resume the analogical impedance applications in acoustics, the general case of transmission of

sound energy between three media, will be considered. (fig 11)

Zr 2:
Z:

2.:

Di pl P_L_.1 pl

    

Fig.”

The equivalent circuit consists in a pressure source connected to a tetrapole and a passive dipole,

defined by their impedances Z., 22, Z}, the open circuit source pressure p0 = 2pi and the

transmission constant 7 of the intennedium system.
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The first stepis evaluate Zn to deduce p2 and then [33. For 211 applies the tetrapole formula in

function of 21, Z3 and y i

Z _Z Z3chyI+erhyI

'2 'ZsrhyI+chl1yl

In the pressure source circuit, the acoustic pressure p; over 2.; is deduced from the

volumevelocity Q = Su.

P2 = ZIZQ

  

22,2
_ 2p; m = Pi

Q _ Zl + z; Z'+ Z2

The transmission system attenuates p2 by e",therefore

ZZ= e-v = _ l2 3-1
P1 P; P. ZI . Z2

and the acoustic power delivered to the load 2,,

1

“’1: 2— = Pi 42” 2 a“,
a Zl(Zl + Z!)

The transmission efficiency 71,

w] ._ 4 Zl 1:} 3‘27,1 = L __ _
wl (2pi)’/Z, z,(z, + 2,)”

 

lfthe source and load media are the same, Z. = Z3 and n simplifies to

1

n = 2 Zn e-Iv

Z. + Z:

In the case of Z, = Z; = Z; = Zn , and y = 0, —> n = l , i.e. 100% efficiency, as expected for a

 

transmission without discontinuities and therefore without reflections.
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It can be concluded that the generalisation of the impedance concept and the use 'of analog

circuits helps in visualising arid solving transmission energy problems between systems

involving wave propagation, with particular application in acoustics.
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