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ABSTRACT

The occurrence and amplitude of nonlinear thermoacoustic instabilities can be quickly estimated
with low-order models. Low-order models, however, contain model errors, i.e., the equations do not
capture all the physical mechanisms. From a statistical inference point of view, we say that low-order
models are biased. We propose a data-assimilation methodology that can simultaneously infer
the acoustic state, model parameters and model error from reference data. We propose reservoir
computing (echo state networks) to represent the model bias. The echo state network is combined
with an ensemble square-root Kalman filter to perform, in real time, (i) the estimation of the
acoustic pressure and velocity, (ii) the inference of the flame parameters, and (iii) the learning of the
model bias. The proposed methodology is tested on a time-delayed low-order model, with synthetic
experimental data from a higher-order model with a flame. This work opens up new possibilities for
assimilating data for cheap low-order models to self-correct on-the-fly.

1. INTRODUCTION

Thermoacoustic oscillations arise in gas turbines or aeroengines due to the constructive interaction
between a heat source (e.g. a flame), acoustics and hydrodynamics [1]. When the acoustic pressure
and the flame are sufficiently in phase, the acoustic modes grow in amplitude, which gives rise
to self-sustained oscillations [2]. These can produce noise, vibrations and may be critical to the
turbomachinery [3]. The dynamics of thermoacoustics are nonlinear and extremely sensitive to
perturbations to the operating conditions [4, 5], which hampers the manufacturing and control of
thermoacoustically stable devices. The development of optimal design and control strategies relies on
the mathematical model used to represent the dominant physical mechanisms [6]. Thermoacoustics
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can be modelled with qualitative accurate low-order models. In contrast to high-fidelity simulations,
low-order models are computationally inexpensive, however, the downside is the lack of quantitatively
accuracy due to the simplifying assumptions.

We develop a data assimilation method that improves the accuracy of thermoacoustic low—order
models on the fly. Traverso & Magri [7] introduced data assimilation in thermoacoustics through
a variational approach. Variational methods require batches of data for a minimisation problem,
making them not suitable for on-the-fly inference [8]. Nonetheless, as accurate thermoacoustic
experimental data becomes more accessible in real time [9], there is a growing interest in real-
time inference methods, such as statistical sequential data assimilation, which bypass the need for
post-processing and data storage. These methods correct the model predictions when reference
data becomes available by performing a Bayesian update, which provides the maximum a posteriori
estimate of the prediction. Real-time data assimilation in thermoacoustics was introduced by Novoa
& Magri [10]. Statistical data assimilation methods are derived assuming that the model error is
unbiased [11]. We generalise these techniques to low-order models, which typically provide a biased
representation of the physics. Auto-regressive models have been employed to estimate the bias in
modified Kalman Filters [12, 13], but they need to prescribe a-priori a model for the bias, and are
limited to constant models or linear problems. We propose Echo State Networks (ESNs) to estimate
the model bias. ESNs are recurrent neural networks based on reservoir computing [14, 15], which
have been proved to learn complex temporal correlations in timeseries, such as nonlinear correlations,
ergodic properties, or statistics of extreme events in turbulence [16—19]. They are general auto-
regressive models [20]. This framework opens up new opportunities for exploiting experimental data
for real-time state and parameter estimation of nonlinear thermoacoustics as well as for the estimation
of model errors.

2. METHODOLOGY

Sequential data assimilation combines the prediction of a numerical model (the forecast) with
observable data to provide in real time a corrected state (the analysis), which is a more accurate
estimator of the physical state (the truth). If the forecast is biased, e.g. if it is produced by a low-order
model, the analysis remains in the biased subspace of the model. Here, we develop a method that
eliminates the model bias. The biased forecast is mapped into an unbiased state, which is statistically
combined with the observables to provide an unbiased analysis. This update indirectly determines
the biased analysis, which is the initial condition of the next forecast step. Figure 1 conceptually
illustrates this bias-aware sequential assimilation process.
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Figure 1: Conceptual schematic of a bias-aware sequential data assimilation process. Truth (gray);
observations (dark blue); biased forecast states (orange); biased analysis states (light blue); unbiased
forecast states (red); and unbiased analysis states (purple). The circles represent pictorially the spread
of the probability density functions: the larger the circles, the larger the uncertainty.




We propose a bias-aware data assimilation method to perform real-time inference of
thermoacoustic state, parameters and model bias in a Rijke tube, which is a laboratory-scale
horizontal open-ended tube with a heat source inside [10]. The observables are acoustic pressure
measurements obtained with microphones [21,22]. The ingredients for this framework are (i) a
forecast low-order model, (ii) a statistical assimilation method, (iii) an estimator of the model bias,
and (iv) data on acoustic pressure.

2.1. Forecast low-order model

We use the dimensional form of the low-order model of a Rijke tube described in [23,24]. The
acoustic perturbations are assumed to evolve on top of a zero-mean flow, which is assumed to be a
perfect gas with negligible effect in the acoustics; the boundary conditions are assumed ideal; and
we neglect viscous and body forces. The governing equations for the acoustic perturbations are the
linearised momentum and energy conservation equations, which can be discretised in space using
a Galerkin method [24]. We model the perturbation heat release rate as a compact source with the
qualitative nonlinear time-delayed model

qfﬁ(d?—u;(t—f) —\/@ (M

where f is the source strength, u is the mean flow velocity, and ui( — 7) is the time delayed acoustic
velocity at the flame location [25]. The forecast model can be written in compact notation as

d
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where ¢ = (i; u; v; @) € RY is the state vector, with N = 2 N,, + N. + N,. This is a concatenation of
the Galerkin acoustic modes for the velocity n € RV and pressure u € R¥»; v € RMe, which are the
modes resulting from the discretisation of an advection equation that numerically stores the delayed
velocity [5]; and the thermoacoustic parameters @ = (8,7) € R, which are the quantities that we
aim to infer. The nonlinear operator is represented by F : RN — R¥; and y is the projection of the
state vector into the observable space at the spatial locations x € R¥m<, The mapping is performed
through the measurement operator matrix M € RVw*V defined though the Galerkin decomposition as
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where w; is the frequency of each acoustic mode and ¢, the mean flow speed of sound.

2.2. Ensemble Square-Root Kalman Filter

We employ the Ensemble Square-Root Kalman Filter (EnSRKF) as the statistical assimilation
method, e.g. [10]. This is an ensemble-transform Kalman filter that is suitable for nonlinear
problems, which avoids sampling errors of the observations [11, 26]. We take an ensemble
approach to represent the state of the system, which reduces the computational cost compared to
non-ensemble methods. For an ensemble A = (Y, ¥,,...,¥,) € R¥¥" the expected state and
its covariance are given by the sample statistics ¢ ~ L 3" 4, and Cyy ~ 7--¥W", respectively,
where ¥ = (!/Il -y, v, — v,..., v, — IZ) The filter provides an analysis ensemble, A?, by updating

independently its mean, J/a, and the deviations from the mean, ¥?, as
-1
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where the subscripts ‘f* and ‘a’ stand for ‘forecast’ and ‘analysis’, respectively; d € RVwic is the
vector of the pressure observations; C. € RMmexMme jg the observations’ error covariance matrix;
y' is the unbiased expectation of the observables from the forecast model; the identity matrix is
represented by I; and V and X are the matrix of eigenvectors and of eigenvalues, from the singular
value decomposition

vEV' = (M) [(m ~1DC. + MY (M Wf)T]_l (M¥"). (4c)

If the EnSRKF provides an analysis ensemble with non-physical parameters (e.g. negative time
delays), we disregard the update and inflate the ensemble with a multiplicative inflation factor [10].

2.3. Echo State Network

We define a time-dependent model bias, b(f) € RV, as the difference between the observations
at each microphone, and the expected estimation from the low-order model. The echo state network
predicts the evolution of this difference by learning its temporal correlations. This is achieved by
mapping at a time ¢ the bias at the previous time step, b;,( — Af), into a high-dimensional reservoir
by the input matrix, Wi, € RV*®mictD) "\where N, is the number of neurons in the reservoir. The state
of the reservoir is defined by the matrix W € RV*"rand a time-dependent high-dimensional vector
r(f) € RM. The updated state vector is mapped back into the physical state by the output matrix,
Wy € RWmic*DXNr = At a time ¢, the reservoir state and the bias are determined recursively as

r(¢) = tanh (Win [f)(t — AD): 0.1] + Wr(f — At)) and  b(t) = Wy [r(0); 1], 5)

where the operation [; ] represents vertical concatenation; b is the bias normalised by its range
component—wise; and the constant 0.1 is used to break the symmetry of the network [27]. With this
definition of the bias, the expected unbiased forecast observables in Equation 4a are y' = My' + b.
The time-propagation of the bias can be performed in either open or closed loop (Figure 2). In open-
loop, the input in each time step consists of the observed bias, while in closed-loop the estimated bias
is used as the input for the next forecast step. During data assimilation, we only use the open-loop
to get the ESN running, i.e., to have the state of the reservoir, r(¢), up to date with the system (this
procedure is known as washout). Then, sequential closed-loops are run in parallel with the EnSRKEF,
and are re-initialised with the measurement data.
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Figure 2: Schematic of the echo state network configurations: (a) open-loop and (b) closed-loop. The
diamonds indicate inputs from the observable data.

The matrices W, W;,, and W, are fixed during data assimilation. The state matrix, W, is a sparse
and randomly generated Erdés-Renyi matrix. Each neuron, i.e., each row of W, has on average d = 5



Table 1: Summary of the parameters. Multiple values indicate that the parameters are optimised in
the given range.

Data assimilation parameters ESN parameters

Ensemble size (m) 50 Training interval 1.2s
State vector size (N = 2N,, + N. + N,) 20+ 50+ 2 Open-loop interval (washout) 0.025s
Number of microphones (Npc) 6 Training 8 5-10° VX}“T',/;
Initial parameter uncertainty 15% Training 7 1.5-107s
Observations standard deviation 1% Spectral radius (p) [0.5, 1.2]
Time between analysis 0.004 s Input scaling (o7y,) [0.001, 2]
Inflation factor 1.01 Tikhonov param. (-log;oy;) 4, 8,12, 16)

non-zero elements sampled from a uniform distribution in [—1, 1]. The state matrix is re-scaled by
its spectral radius, p. Similarly, Wi, is sparse and randomly generated, but with only one non-zero
element per row, sampled from a uniform distribution in [—07,, 07,], Where o7, is the input scaling.
The output matrix W, is obtained from training, which consists of solving a linear system

(RR" +y,DW! =RB_ , (6)

for a training dataset of length N, where R € R™*D*Mr ig the horizontal time-concatenation of the
augmented reservoir state, i.e., [r(;); 1] with i = 1, ..., Ny; Boy € R¥mieXNe ig the time-concatenation
of the output data; and vy, is the Tikhonov regularisation parameter [14]. We add white noise with
standard deviation, o, = 0.03 0, to the training data, where o, is the component-wise standard
deviation of the training data. This regularises further the network and improves the performance [14].
Finally, we optimise the parameters o7, p and y, with Recycle Validation [19].

Table 1 summarises the parameters used for the data assimilation and the echo state network.

2.4. Observables from a higher-order model

We create the observable data from a travelling-wave model [28]. A detailed description of the
implementation of this model can be found in [29]. The travelling-wave approach relaxes assumptions
from the low-order model: (i) the mean flow effects are not neglected, and jump conditions across
the flame are implemented; (ii) the non-ideal boundary conditions are defined through reflection
coeflicients; and (iii) the compact heat source assumption is relaxed by employing a flame kinematic
model that kinematically tracks the flame front area [28].

3. RESULTS

We train the ESN with a 1.2 s dataset. The training data is the difference between the statistically
stationary limit cycle from the travelling—wave model, and a realisation of the lower—order model with
an initial guess of the parameters S and 7", The training process optimises the weights of the
output matrix as well as the network’s key parameters. To select the spectral radius, the input scaling
and the Tikhonov parameter, we minimise the average mean-squared error (MSE) of multiple closed-
loop predictions in the training data, which are defined through the Recycling Validation strategy [19]
(Figure 3). The input scaling and spectral radius are tuned in the range [0.001,2] X [0.5,1.2]. The
minimisation is performed with a Bayesian optimisation that starts from a 4 X 4 grid, and evaluates
the function in four additional search points. In each point, the MSE error is computed for the
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Figure 3: Parameter optimisation through Recycle Validation and Bayesian optimisation. Contour
plot of the mean-square error (MSE). The MSE is evaluated in a 4 X 4 grid (triangles), and four search
points (squares).

Tikhonov parameters 107*, 10,1072, and 107!6. The optimal parameter combination is found to
be p = 0.9667, 0, = 0.001, andy, = 1- 10716,

Figure 4 shows the results from state, parameter and model bias estimation. The ESN is initialised
with an open-loop of 0.025 s sampled at 10000 Hz before the data assimilation begins (panel (a)).
The biased solution is the expectation from the low-order model, and the unbiased filtered solution is
the resulting pressure state after adding the model bias estimated with the ESN. The bias-aware data
assimilation recovers the true pressure state and learns its dynamics. The attractor of the unbiased
filtered solution, which is obtained after the filter reaches convergence, evolves around the true
attractor, with some noise (panel (b)); and the dominant frequency spectrum is recovered (panel (d)).
In addition, the parameters converges after 0.25 s to roughly the same time delay as the training value,
and half of the training heat source strength (panel (c)). Therefore, the ESN is capable of estimating
the bias of data that was not seen by the machine. (This unseen data has different thermoacoustic
parameters and dynamics than the training dataset.) In the machine-learning terminology, the ESN
generalises satisfactorily to unseen scenarios. This is an ESN’s key capability, which can be exploited
in more realistic scenarios, for example, when the data comes from experiments.

4. CONCLUSIONS

The dominant dynamics of thermoacoustic oscillations can be modelled with qualitatively accurate
low-order models. We propose a bias-aware data assimilation method to make reduced order models
quantitatively correct. This is achieved by seamlessly combining an echo state network with a
Bayesian sequential data assimilation method based on the ensemble Kalman filter. The model error
(bias) is estimated by the echo state network, while the state-and-parameter estimation is given by
the data assimilation algorithm, which combines the model and bias prediction with observations to
provide the most likely estimation. The echo state network is trained a priori, then it is initialised
before running in parallel with the sequential data assimilation algorithm. We test this framework
with observations created from a higher-fidelity model, which includes mean flow effects, non-ideal
boundary conditions and a kinematic model of the flame. With a short training time, the echo
state network is able to learn the dynamics of the physical information missing in the low-order
model. The proposed bias-aware methodology successfully predicts, in real time, the time-accurate
thermoacoustic state and its statistics, as well as the low-order model error and key thermoacoustic
parameters. This work opens up possibilities for inferring model errors on the fly.
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Figure 4: State, parameter and model bias estimation. Time evolution of (a) the true (light grey),
biased (dashed black) and unbiased (dark grey) filtered acoustic pressures at x/L = 0.18, the red
circles are the observations, and the vertical dashed lines show the data assimilation window; and (c)
the thermoacoustic parameters with their standard deviations, normalised to their training value. The
(b) phase portrait and first return map, and (d) power spectral density (PSD) show the dynamics of the
truth (dark blue), the unbiased (light blue) and biased (orange) filtered solutions after convergence.
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