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ABSTRACT 
An important topic in the area of airborne sound propagation is the prediction of sound 
propagation above an impedance ground with an atmospheric profile whose sound speed varies 
with height. Even if this problem is simple in concept, it leads to complications for general 
velocity profiles. This work illustrates the existence of a large class of realistic atmospheric 
profiles for which analytical solutions exist to be used as benchmark solutions for numerical 
methods. Spectral finite element results are discussed for sound propagation in a half-space 
situated above a ground surface impedance. 
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1. INTRODUCTION 
Analytical benchmark solutions are required for situations that go beyond the squared refraction 
index linear model in order to test numerical methods that are required for even more 
complicated situations. Asymptotic limits, like a large distance between transmitter and receiver, 
are of particular interest since numerical methods may then be inefficient.  
 

   
Figure 1: Geometry for numerical solution. 

 
 

The analytical details of the solution including selection of right and left going waves are 
presented for a tanh-like profile. In the current note the spectral finite element method is used to 
predict the sound pressure for the tanh velocity profile, the geometry for the FE method is 
shown 
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2. GREENS FUNCTION & MODEL 

We study the propagation of sound waves in a half space 0≥z  where the sound speed 

depends on the vertical co-ordinate z   only. The sound source is a line source with amplitude 1 

located at 0),,0(),( fss zzzx =  and the ground is modelled by an admittance boundary 

condition. A stationary time dependence 
tie ω−
 has been assumed and 0/ ck ω=  with 0c  being a 

fixed standardised sound speed. Let )(/)( 0 zcczn =  be the acoustic refractive index as the 

sound speed )(zc  varies with z . We express the Green's function as an inverse Fourier integral 

in the x -variable 
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Then p  solves the inhomogeneous Helmholtz equation 
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where 
22 un −=γ  having branch cuts on the real u -axis from n  to ∞+  and from n−  to ∞− .  

We find that exact solutions to Eq. (2) are known explicitly in terms of hypergeometric functions 
for special versions of the inhomogeneous term. Specifically it is a Rosen-Morse potential. 
Without going into too much detail the exact solution for Eq.(2) maybe written in terms of right-
going (downward) and left-going (upward) waves : 
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and F  is a hypergeometric function. Hence the Green’s function may be calculated through 
equations (3) and (2). Asymptotic expressions for the Green’s functions and explicit 
comparisons with the numerical model have been presented in Peplow and Nilsson1 and are a 
current subject for further study.  
 

3. THE FINITE ELEMENT MODEL 

Simulations over impedance ground will be presented in the current paper using the spectral 
finite element numerical solutions that previously have been derived by Peplow and Finnveden2 
the central theme of which is a generalized eigenvalue problem solved by a QZ algorithm in 
MATLAB. In order to make possible a coming comparison with analytical methods, the Rosen- 
Morse velocity profile is used. Figure 1 shows a typical spectral element geometry. In the usual 
finite element discretization the cross-section is divided so that material parameters are 
constant within each interval, here this is extended so a non-constant profile is possible. In the 
super-spectral method the velocity profile in the vertical direction may be specified arbitrarily.  
Here the velocity profile is defined through the potential function defined above where argument 
in the Rosen-Morse potential is az where the small constant, in the following examples, takes 

the value 1.0=a .  

 



For the numerical results the admittance for the absorbing ground is calculated using an 
admittance formula which gives the normalised admittance. A value  appropriate for grassland 

at 300 Hz i29.034.0 −=β . Values taken outside the grass strip are for rigid ground; in addition 

all the examples here represent numerical simulations for a point source 1.0 m above the 
ground at a single frequency, 300 Hz and the grass-strip is between 10 and 45 m from the 
origin. 
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Figure 2: Excess attenuation above rigid ground at 300Hz for homogeneous medium. Solid black 
isolines represent exact solution and green isolines approximations by the finite element method. 

 
The calculation shown in Figure 2 was carried out in terms of  excess attenuation over free-field. 
In free-field conditions, the whole of space is filled with the medium of propagation and there are 
no boundaries. 
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Figure 3: Acoustic pressure in media with profile V(z ) with a = 0.0, 5:875m above rigid ground 

surface at 300Hz. Real part pressure (solid line), imaginary part (dash–dot), and magnitude (dashed line). 

 
Figure 3 shows the numerical solutions at constant height 5.875 m above the ground surface 
and may be compared to Figure 4 due to the sound velocity profile. An increasing sound speed 
profile when a positive gradient is common. This is caused by the rapid cooling of air at the 



surface as heat is now absorbed by the ground. This is called an inversion or negative lapse 
and the sound waves are bent downward.  
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Figure 4: Acoustic pressure in media with profile V(z ) with a = 0:1, 5:875m above total grassland 

surface at 300Hz. Real part pressure (solid line), imaginary part (dash–dot), and magnitude (dashed line). 
 

Figure 4 clearly shows a small oscillation in sound pressure level, compared to Figure 3, in the 
immediate vicinity after destructive interference at 15.0 m due to the sound velocity profile. The 
inversion or negative lapse implies that the sound waves are bent downward causing 
oscillations in sound pressure against distance. Figures 4. 5 and 6 clearly show the effect of 
dissipation due to the the ground surface admittance. At 300Hz a value for the algebraic decay 
rate of the sound pressure along this level is not straightforward to estimate. 

0 5 10 15 20 25 30 35 40 45 50

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

 Horizontal distance, x (m)

 A
co

us
tic

 p
re

ss
ur

e,
 S

ou
rc

e 
he

ig
ht

 =
 1

.0

 Pressure above grass strip at Frequency 300 Hz. a = 1/10. Height 5.875

 
Figure 5: Acoustic pressure in media with profile V(z ) with a = 0:1, 5:875m above grass–strip 

surface, 10m · x · 45m, at 300Hz. Real part pressure (solid line), imaginary part (dash–dot), and 
magnitude (dashed line). 

 
 

However it is clear that the presence of refraction and dissipation are evident for both models 

which are a total grassland model, i29.034.0 −=β ,Figure 4, and a grass-strip model, 



ib 29.034.0 −=β , 0== ca ββ , Figure 5 and 6.. Interference effects due to the impedance 

discontinuity, as expected, are not observed over grassland  Figure 4  but are present in the 
grass-strip model  Figures 5 and 6. 
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Figure 6: Acoustic pressure in media with profile V(z ) with a = 0:1, 0.1m above grass–strip 

surface, 10m- 45m, at 300Hz. Real part pressure (solid line), imaginary part (dash–dot), and 
magnitude (dashed line). 

 

4. CONCLUSIONS 
A general discussion has been given of a Greens function model and an FE model including 
radiating boundary conditions for the wave equation within a variational framework. The method 
is demonstrated with a classic example from sound propagation over an embedded grass–strip 
in an atmospheric profile. Results show some promise in this direction in terms of accuracy in 
the proximity of the grass–strip discontinuities and asymptotic analysis between the two 
methods in the future. 
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