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1 INTRODUCTION  

The bridge on most bowed string instruments is made from a special grade of maple. It is held in 
place only by the tension of strings and plays a critical transfer role between the vibrating strings 
and the radiating corpus during the sound production of the instrument. An intelligently cut and well 
fitted bridge can have a profound influence on the inherent tonal characteristics of bowed string 
instruments. Knowledge collected up to 1993 on the physics of the bridge has been summarized by 
Hutchins [1]. However, the cello bridge, which is very different from a violin bridge in proportions, 
has been less emphasized in the violin acoustics literature. This paper intends to confirm and 
expand previous knowledge of the motion of a cello bridge in the low- to mid-frequency range. 
Mechanical admittance measurements at five points around the bridge plus four points on the top 
plate near the bridge feet were carried on the tested cellos. The motions of these points at any 
given frequency were processed to show the best-fitted rigid-body motion of the bridge, which can 
be expressed as rotation around an instantaneous centre.  
 
 

2 FUNCTION OF THE BRIDGE  

Makers and researchers have been aware of the importance of the bridge for centuries. The motion 
of the bridge is of special interest to scientists since the energy transfer between the strings and the 
resonant body of the instrument is intimately affected by this motion. Minnaert [2] reported the first 
detailed investigation into the flexural, torsional and transverse vibration of a violin bridge using a 
special designed optical system. The first study on the motion of a cello bridge was done by Bladier 
[3] in 1960 using a piezoelectric transducer fastened to the tested bridge. In this way, he showed 
differences between the motions at the two cello bridge feet. In 1979, Reinicke [4] displayed the 
motion of a violin bridge and a cello bridge using hologram interferometry, and modelled the 
motions mathematically. Experiments on the motion of the violin bridge were made by Müller [5] in 
1979.  He measured the sound pressure with differently-designed bridges and discussed the 
function of the bridge. Cremer [6] summarized this work in his remarkable book of the knowledge 
about the violin family up to 1983. Trott [7] sketched the impedance coupling between the strings 
and the bridge for the first time. Marshall [8] pointed out that the violin bridge shows more motion 
over the bass bar area up to 700 Hz. Since the 1990’s, finite element analysis has found application 
for studying the vibration behaviour of bowed string instruments.  Studies by Rodgers and Masino 
[9] and Kishi and Osanai [10] both examined the bridge motion under different conditions using 
finite element analysis. Jansson [11, 12, 13] and his co-workers investigated the effect of bridge 
modification on the vibrational behaviour of the instrument. They started with the influence of wood 
removal from different areas of the bridge and then turned their attention to the bridge foot spacing. 
Modal and acoustical measurements for analyzing the motion of the violin bridge as a filter were 
done by Bissinger [14]. His experimental results showed the transition of the predominant motion of 
a violin bridge from the bass-bar side to the soundpost side, which also confirmed the findings of 
Marshall. 
 

3 EXPERIMENTS 

Systematic experiments have been conducted on a cello in good playing order, fitting with a Belgian 
design bridge but with a normal heart. Compared to the typical Belgian bridge, the bridge on the 
tested cello has a less compact heart. It still has an upper body and longer feet as normal Belgian 
ones, which contribute to produce a brighter and louder sound. The width between its outside foot-
edges is 90 mm.  
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During the measurements, the tested cello was held by a steel support frame with a firm base and 
steadied firmly by soft foam pieces from two sides as shown in Figure 1. Its endpin was fixed in one 
hole of a centre metal strip and the neck was fastened by a cable tie to another strip above. All the 
acoustical measurements were undertaken in the same laboratory acoustic environment. A 
miniature instrumented hammer was adopted to provide a force pulse to each point of interest on 
the cello bridge or top plate of the tested cello. The vibration response was measured by an 
accelerometer mounted on the C-string corner of the cello bridge, aligned along the bowing 
direction of that string.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1  Cello set up for input admittance measurements. 

Figure 2 shows the positions and directions for measuring the transfer admittance of the marker 
points on the cello bridge. The C-string corner of the cello bridge is denoted as Point 1. Points 2, 3, 
4, 5 are marked by black circles on the surface of the cello bridge in its plane. Points A, B denoted 
by blue circles are equally spaced by the two sides of the bass-bar bridge foot on the top plate; 
Points C, D marked by blue circles are near the sound-post bridge foot in the same way. These nine 
different points were hit by the hammer in turn. Black triangles N1, N2, N3 and N4 denote the 
positions of the notches under the C, G, D, and A strings respectively.  
 
Hammer impacts were only exerted in the plane of the bridge or the planes parallel to it during the 
measurements. Forces labelled as F1 and F3 were applied to Points 1 and 3 on the bridge along 
the bowing direction of the nearest strings. Impulses labelled as F2, F4 and F5, were applied to 
Points 2, 4, and 5 normally on the sides of the bridge, in the direction of the red arrows. Impact 
forces FA, FB, FC and FD were respectively imposed downward to the top plate along the 
directions of the blue arrows, which are normal to the top plate. Because Points 6 and 7 cannot be 
hit by the hammer directly, the motions of each bridge foot were extracted from measurements on 
the corpus: F6 is the average result of FA and FB, and the average of FC and FD was used to give 
F7. The response acceleration was measured at the C string corner of the bridge by the 
accelerometer. Therefore the measurements relevant to the seven different marker points on the 
bridge can be obtained, and then used for calculating the planar motion of the cello bridge as will be 
described next. 
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Figure 2  Force response positions and directions for the nine marker points on a cello bridge. 

 

 

4 CALCULATION OF THE BRIDGE MOTION  

Although the motion of the bridge is complex, the bridge can be approximated as a rigid body with 
little internal deformation over the low- and mid-frequency range, from past research. These planar 
rigid body motions of the bridge can be described, at any given instant of time, by rotation about a 
unique point. The location of this point is specific for each frequency and is referred to as the 
instantaneous centre of rotation. In this subsection, a simple least-squares derivation will be 
performed to calculate the instantaneous centre of rotation of the cello bridge. 
 
Consider the original position of the cello bridge within a plane coordinate system X’-Y’-φ as 
indicated in Figure 2. The axis Y’ is parallel to the direction of F2 and X’ is perpendicular to Y’ which 
is located in the same plane. An anticlockwise rotation φ is considered to be a positive rotation. 

Take Point 2 labelled as  ',' 22 yx  as an example. Denoting the angle between the axis X’ and the 

direction of the applied hammer impact at this point as φ, the coefficients for Point 2 can be written 

as  222 ,',' yx . The coefficients of the seven marker points in X’-Y’-φ coordinates can thus be 

written: 
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The corresponding coefficients for the four string notches in X’-Y’-φ coordinates are: 

Accelerometer 

306



Proceedings of the Institute of Acoustics 
 
 

Vol. 36. Pt.3 2014 

 

 
.

''

''

''

''

'

111111

101010

999

888





























yx

yx

yx

yx

N
 

 
Point 2 is arbitrarily chosen as the reference point for calculating the motion of the bridge. We 
construct another set of rectangular axes and a rotation angle at Point 2 to resolve any inclined 
forces and response into the components in Figure 2: the axis Y is in the opposite direction to the 
hammer force on point 2; the axis X is the direction perpendicular to Y in the same plane; and φ 
remains the same as that in X’-Y’-φ coordinate system. Thus rewrite the coefficients of the seven 
marker points and four string notches in X-Y-φ coordinates using formulae:  
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where j = 1, 2, ..., 11.  
  
Thus in X-Y-φ coordinates,  
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Now consider the cello bridge as a rigid body which has both translational and rotational motion as 
illustrated in Figure 3. The plane coordinates X-Y are based on Point 2, now denoted as O, and the 

marker point 
jP  labelled as  

jj yx ,  in the X-Y-φ coordinate system rotates about the instantaneous 

centre C at the instant considered.  
 
 
 

 

 

 

                                                                                                                                  

Figure 3  Reference point and one marker point rotate about the instantaneous centre. 

It is convenient to introduce the third orthogonal component of the coordinate system. Thus write 

the velocity vector U at O as u,v, 0( ), and the angular velocity vector   as  ,0,0 .  The position 

vector 
jP of the marker point 

jP  is x j, y j, 0( ) , and the angle between the axis X and the direction of 

measured displacement on the point 
jP  is 

j . The velocity vector 
jV of the point 

jP  is then defined 

by the transformation 
 

 
jj PUV    
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where 
jV  is u j,v j, 0( )  and  j = 1, 2, ..., 7. Thus the components of 

jV at the point jP  can be written  
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Denoting 
jZ  as the unit vector along the direction of the displacement of the marker point 

jP , 
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The translation of point 
jP  along 

jZ  per unit time is then given by 
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Thus the translations of point 
jP  per unit time in the X-Y-φ coordinate system around the 

instantaneous centre of rotation can be written as 

                                                              
 ,SAt jj   

                                                                                                                                                                          
where  
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and 

 
  .sincossincos jjjjjjj xyA    

 
The displacements of the seven marker points in the X-Y-φ coordinate system around the 

instantaneous centre C at that moment can be written by expanding the above 
jA  to obtain 
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The reciprocal theorem for a linear system has been utilized here: the response collected from Point 
1 caused by force applying on a marker point should be the same as that acquired with inverse 
input and output points. Therefore, the experimental results can be regarded as the vibration 
responses measured on the seven different marker points along the directions of the original input 
forces respectively while the input force was exerted on Point 1. Therefore the measured 
displacements of the seven points along the direction of their input forces in the X’-Y’-φ coordinate 
system are  

   .7654321

T
mmmmmmmM   
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Now we can explicitly estimate the velocity vector U  and rotation rate   at O by using the simple 

least-square solution. The best fit to  
 

 MAS      

   
is given by 
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The instantaneous centre is now defined by the condition that there is no linear velocity at that 
point, requiring  
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where C = xic, yic, 0( ): icx and
icy are the coordinates of the instantaneous centre C in X’-Y’-φ 

coordinates. Then 
icx and

icy can be found straightforwardly: 
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The coordinates of the instantaneous centre C in the X’-Y’-φ coordinate system are thus 
 

 ,'' 2 
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The final complication is that the results discussed are all complex numbers.  This means that the 
instantaneous centre moves cyclically during each period of oscillation at the given frequency.  If 
there is a phase difference between the translational and rotational motion components, as there 
usually is, this trajectory is a straight line that goes to infinity and back from the opposite direction: 
the distance along the line follows a tangent function.  However, there is a well-defined sense of the 
position on the line where most time is spent (given by the zero of the tangent function), and that is 
the position that will be plotted when results are shown in the next section. 
 

5 RESULTS 

Motions of the tested cello bridge obtained by this least-squares solution are shown in the following 
two figures. A first look at the instantaneous centre of the tested cello bridge can be seen in Figure 
4. The red line shows the X’ coordinate of this motion centre at each frequency over the range from 
65Hz to 2000 Hz. The upper blue line shows the position of the soundpost foot of the cello bridge 
while the bottom blue one denotes the bass-bar foot. Figure 5 illustrates the trajectories of the 
instantaneous centre of the tested cello bridge over a series of frequency ranges ranging in total 
from 65Hz to 2000 Hz. In each plot, the seven marker points around the bridge are denoted by 
black circles, the four string notches are denoted by blue circles and the instantaneous centre at 
each frequency by red circles. It can be seen from these two figures that the instantaneous centre 
tends to move back and forth between the two feet of the bridge: it falls predominantly on the 
sound-post side in the frequency range from 65 Hz to 205 Hz, then moves towards the bass-bar 
side in the frequency range from 205 to 466 Hz, clusters in the middle of two feet over the 
frequency range from 466 Hz to 1200 Hz, and finally moves back to the sound-post side before 
2000 Hz. Only in the highest range shown here does the instantaneous centre move upwards from 
near the top plate surface.  
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Figure 4  X’ coordinates of the instantaneous centre of the tested cello bridge over the frequency range 
from 65Hz to 2000 Hz. 

 

      
                               (a) 65-205 Hz                                                                 (b) 205-466 Hz 

 

    
                             (c) 466-1200 Hz                                                              (d) 1200-2000 Hz 

 
Figure 5  Trajectories of the instantaneous centre of the tested cello over the frequency range from 

65Hz to 2000 Hz. 
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6 CONCLUSIONS 

 
Measurements have been shown that elucidate the detailed motion of a cello bridge at low 
frequencies. The results are broadly in agreement with behaviour seen in earlier experimental 
studies. The observed bridge motion shows the characteristics of a rigid body in the low- to mid-
frequency range: the bridge pivots around an instantaneous centre with little deformation. The 
instantaneous centre tends to lie close to the bridge foot near the soundpost at the lowest 
frequencies, but at higher frequencies it moves towards the bass-bar foot.   
 
The results shown here all relate to one particular cello and bridge, but similar experiments have 
been carried out on three different cellos with different bridges, with broadly similar conclusions. 
The experimental results go some way towards explaining the variations between the input 
admittance of the cello body felt by the separate strings at their respective bridge notches. This in 
turn bears upon variations in playability from string to string via the response of low body modes to 
bowing the different strings; for example, variations in minimum bow force and “wolfiness”. 
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