
 
 

 

 
AbstractA system architecture for the automated fusion of 

multiple detections by computer-aided detection and 
classification (CAD/CAC) algorithms from multiple passes over a 
scene is described. The fusion of multiple detections exploits 
features that are not available from a single pass. 
 

Index Terms—classification, fusion, multiple-pass  

I. INTRODUCTION 

he automated detection and classification of threat objects 
in sidescan and synthetic aperture sonar images is an 

important problem for harbor security and fleet protection. 
The goal of automation is to relieve the burden on human 
operators of scanning through the large areas covered by 
modern sonar systems. In the typical process, a detector finds 
possible threat objects, a feature extractor quantifies 
appropriate characteristics, and a classifier discriminates 
potential threats from non-threat objects. The human operator 
then reviews the automatically generated potential threats for 
final classification. Each pass is processed independently; 
classification of each object is based on a single look from one 
pass.  

While this procedure works well for objects that are clearly 
threat objects or clearly non-threat, it is often inadequate for 
borderline cases. In those cases, when classification is being 
performed by human operators, they will review looks at the 
location from previous passes. Often views from earlier 
passes, while inconclusive when considered separately, can in 
combination provide enough information to classify the object 
with confidence. We have developed an automated detection 
and classification architecture using looks from multiple 
passes to mirror this process. For each detection made, image 
data at the same location is automatically reviewed. Features 
from the current and past detections are fused along with 
additional multi-pass features extracted, and used by a multi-
pass classifier to make a threat/non-threat decision. 
Furthermore, future passes by that location will automatically 
cue the automated detection and classification process, 
making use of the previously extracted features, to update the 
earlier classification.  

In this paper, we describe in detail the multi-pass 
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classification architecture. We will discuss our techniques for 
fusing detections from multiple passes and the multi-pass 
features extracted from the fused detections.  

II. ARCHITECTURE 

The architecture schematic is shown in Fig. 1. A portion of 
a SAS or sidescan image is given to a suite of CAD/CAC 
algorithms. These algorithms produce a list of locations and 
threat confidence scores for threat objects within the image. 
Optionally, for each algorithm, a list of features can be 
returned for each detection. The interface within the 
architecture for these CAD/CAC algorithms is open so that the 
operator may include multiple third-party algorithms of their 
choice. The architecture does not need to know the 
implementation or training details of these algorithms, 
allowing the proprietary nature of this information to be 
preserved. The training and utility of each algorithm is the 
responsibility of their respective creators.  

The detections from the multiple algorithms are then 
combined based on proximity. Because the detections are all 
based on the same image, co-registration is not an issue. The 
proximity fusion gives the combined set of location, scores 
and features (if available) to the single-pass, multi-algorithm 
classifier. This classifier uses the scores and features to 
produce a fused threat score and is described in more detail 
below. Since it is not expected that every CAD/CAC 
algorithms will find all threats, missing detections are handled 
gracefully in a way that does not bias the fused score. The 
fused detection including all the information is placed into a 
database.  

So far, the architecture follows the typical processes of a 
multiple algorithm suite. In the next step, a multi-pass fusion 
engine compares the current detection with previous 
detections. Described below in more detail, this process 
associates together detections from different passes over the 
same object and generates a combined set of features for each 
object. This feature set is then used by the multi-pass, multi-
algorithm classifier to compute an overall multi-pass score. 
High threat objects are presented to the operator, while both 
high and low threat objects are recorded in the database.  
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Fig. 1: Architecture for combining multiple detection and 
classification algorithms on single and multiple passes. 

A. Multi-Pass Detection Fusion 

While fusion of detections by multiple CAD/CAC 
algorithms within a single image are simple to co-register 
based on proximity, fusing detections within images from 
multiple passes is more difficult because of navigation and 
sensor variability between passes. The variability can be 
mitigated by procedures to accurately geo-locate the pixels of 
each image; however, this is not always easy to do. Although 
this architecture attempts to accurately geo-locate the images, 
to have a more robust multi-pass fusion, it does not rely 
entirely on proximity to associate detections from different 
passes.  

Instead, a more generalized “parametric” proximity is used, 
employing the features of each detection as well as its 
location. The sum of the squares of the differences between 
two detections’ locations and other features is used as a 
distance metric. Each term is weighted, by default, according 
to the expected deviation of the location or feature. This 
weight can be tuned by an expert operator, for example to 
reduce the input of less discriminatory features; but will not be 
modified during regular operation. If two detections, from 
different passes, are within a specified parametric distance, 
they are considered to represent the same object. Detections 
beyond that distance are not associated.  

This multi-pass fusion technique is intended to imitate the 
process used by an operator to find the same object on 
previous passes. While the operator will use the locations as 
the first indicator, an apparently co-located detection will be 
ignored in favor of another nearby one, if the features of the 
other are a better match.  

Once the detections from multiple passes are co-registered, 
multi-pass features are added to the fused detection. These 
features should capture information that can only be 
determined by the association of detections from multiple 
passes. The intent is to produce a feature set that is more 
discriminatory than all of the features from single passes 
considered individually.  

Several options are considered. The simplest is finding the 
mean and variance of each of the features over the multiple 
passes. This should be a better measure compared to the 
features individually from each pass. Potentially the statistics 
can be weighted according to the confidence score of the 

detection, so that a strong detection has more influence than a 
borderline one.  

Another choice for a multi-pass feature is picking the “best” 
of detections, where best is determined by the scores. This can 
be done on a per-pass or per-classifier basis. For example, the 
best detections can be chosen by the single-pass fused score, 
using all the CAD/CAC algorithm features that were used to 
generate that score. Alternatively, since the highest score for 
algorithm #1 might be from a different pass than the highest 
score for algorithm #2, the features for each algorithm can be 
chosen from different passes. This choice takes advantage of 
the possibility that different algorithms may perform better 
under different circumstances, particularly different aspect 
angles of an object. Once the best features are determined, 
they can be used as is or averaged together over the top 
several.  

One option that may be especially useful for change 
detection applications is an old versus new comparison of 
features. The difference between features from the most recent 
pass and the mean (or best of) features from previous passes 
may be useful features. The older features can be time-
weighted. This difference could be exploited to find objects 
that are superficially static, but may in fact have been 
modified.  

Which type of multi-pass feature performs the best is yet to 
be determined, and may depend on the specific targets and 
CAD/CAC algorithms used. In general, all of the features can 
be made available to the multi-pass classifier, at the cost of 
increased training time and space. Since the classifier will use 
only the most discriminatory of the features; adding additional 
feature will not reduce its performance. Once the classifier is 
trained, to improve execution speed and reduce storage 
requirements, only those features used by the classifier need to 
be computed.  
 

B. Classifiers 

Two types of classifiers are included with the architecture. 
The first is a trained classifier used to generate a threat score 
based on the available features. Both a Joint Gaussian 
Bayesian classifier (JBC) [1] and a Relevant Vector Machine 
(RVM) [2] classifier are implemented; either may be used. 
While the internal computational details of the two classifiers 
are different, their performance is comparable.  

Either choice requires training. Training takes two sets of 
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feature vectors, one set for threat detections and one set for 
non-threat detections. A heuristic algorithm iteratively trains 
the classifier. At every step, each set is divided into two—one 
for computing classifier parameters and one for evaluating the 
performance of the classifier using those parameters. 
Performance is compared by integrating the probability of 
correction classification over a designated range of the 
probability of false classification. This is typically either the 
entire domain from zero to one if the operating regime is 
unknown, or a small range of values around the expected 
operating value.  

An evolving subset of features is used at every step, so that 
features that have little discriminatory power are eliminated 
from consideration and those with the most are retained [3]. 
Both the subsets of vectors and of features are varied with 
each pass through the loop, so that solutions optimized to a 
narrow range of features are avoided. The classifier with the 
final parameters should perform well under most of the range 
of features presented by the training sets.  

This trained classifier, in the single-pass multi-algorithm 
role, is used to generate a fused threat score based on the 
detections found by one or more CAD/CAC algorithms at a 
single location. Features used by the classifier here include 
both the score reported by each classifier and any features 
returned by the corresponding detector. The classifier, in the 
multi-pass multi-algorithm role, is also used to compute a 
multi-pass threat score, based on all of the available features 
and scores from the detections fused together, including the 
fused scores generated by the single-pass multi-algorithm 
classifier and multi-pass features produced by the multi-pass 
fusion. While the same classifier algorithm is used in both 
roles, obviously they use and are trained with different 
features.  

The second type of classifier is used to partially automate 
the initial training of the first classifier type. Generating the 
sets of feature vectors needed for training can be time 
consuming, since appropriate threat and non-threat examples 
must be extracted from sensor data. To ease this process, a 
simple detector and classifier are used to scan the imagery. 
The detector finds any object that is vaguely threat-like. Next, 
the classifier uses a simple fuzzy-logic calculation to evaluate 
each detection. Any detection that has even a low possibility 
of being a threat is flagged to be included in the training sets. 
Detections that are extremely unlikely to be threats, as 
determined by a tunable parameter, are eliminated from 
consideration. An expert human operator then must decide if a 
detection is a threat, non-threat, or not useful for training. 
While human intervention is required, classifying detections is 
generally easier than scanning imagery for all threats and non-
threats useful for training.  

Once an initial training set of detections is evaluated, the 
CAD/CAC algorithms produce the features that will be used 
by the two multi-algorithm classifiers. They are trained 
sequentially; the single-pass classifier must be trained first, 
since its output of a fused threat score can be used as a feature 
by the multi-pass classifier.  

 

III. CONCLUSIONS 

The detection of mines in anything other than extremely 
benign environments is a hard problem for either a human or a 
computer. The MCM community routinely requires multiple 
looks at a field of interest in order to improve confidence in a 
mine-free assessment. To expect that a computer with a single 
look can do better than a trained operator using multiple looks 
is, perhaps, a little naive.  

The multi-pass fusion system implemented by AST is not 
an automated detection/classification algorithm; it provides a 
framework to gather together the best-of-class CAD/CAC 
algorithms and to use them in a way that mimics the action of 
expert human operators. Working towards an efficient process 
to gather together information from multiple passes over an 
object in order to improve the quality of correct classification 
will, hopefully, move us one step closer to the removal of the 
trained operator from the minefield.  
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