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1. INTRODUCTION

This paper-investigates the response to excitation of fluid—loaded elastic structures supported by a
finite array of thin ribs. Numerical calculations have been undertaken when the ribs of the array are
arranged in two ways: (1) strictly periodically, (2) randomly displaced from these periodic sites.
The response of the structure to excitation at a single rib is characterised by the vertical velocity
of the structure along the array. This can be related to the force on the structure at each rib and
the Green’s function for the unribbed structure. Numerical investigations concentrate on the effect
of the form of the Green’s function on the membrane response. In general the full Green’s function
comprises a subsonic surface wave component (G5) which provides local bay-to-bay coupling, and
an acoustic or hydrodynamic component (Ga) which provides more long-range coupling between
the source and distant bays. Most studies to date have concentrated on the regime in which Ga
can be neglected. This paper addresses the question of what effect the inclusion of the acoustic
component, Ga, has on the characteristic response of the structure.

2. PERIODIC STRUCTURES

Consider an elastic membrane supported by a finite arrayof thin ribs at locations I," above which
lies static compressible fluid. A vacuum is assumed to occupy the region below the structure. The
central rib (In) is driven by a time-harmonic line force with all other ribs assumed to have infinite
mechanical impedance, so that fluid loading provides the only mechanism for the transmission of
energy along the array.

The general structural response of the membrane at each rib is expressed as

X

V(zm)=vm= Z FnGom-zn). m=-N.....N. (1)
n=—N

The velocity V(zo) at the driven rib may be taken as known, and V(zm) = 0 at the other ribs. This

defines a system of complex linear equations. or a matrix equation. which can be solved numerically
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to determine the unknown forces, F".

The subsonic part of the Green’s function is expressed as :

03(0: 9'5 0) = Ax eXPUKIIl)» (2)

where n is the wavenumber and Ar,o is the transfer admittance.

For the present investigation asymptotic solutions of Crighton [1] are used to describe the acoustic

part of the Green’s function. Under various regimes of fluid loading G’a can take one of the following

forms :

 

—3iAG..(x¢0) = “213°. (a)
cameo) ~ elzl-iexpunizi) 1<<za<<a-2, (4)
Ga(z;é0) ~ ail—gexpfinlzl) Ion-2. (5)

where 5 is a fluid loading parameter which depends on the material constants of the plate and the

loading fluid. 1:0 = km|x| with km being the free wavenumber on the membrane in the absence of

fluid loading.

In all cases

G(z = 0) = A0 (6)

where A0 is the drive admittance.

When the Green's function takes the form of plane waves (G, only) it has been shown for infinite

arrays (Crighton [1]) that the response of the structure depends critically on the scaled driving fre-

quency ¢ (4) = nh where h is the rib spacing) and that local coupling induces a frequency pass/stop

band structure. For frequencies in pass bands energy is found to propagate along the array without

attenuation, whereas at frequencies in the stop-bands the energy becomes exponentially localised

around the source.

Crighton [1] obtained: using asymptotic methods for an infinite array of ribs, expressions for the

|Fn| as |n| —-> oo in the different regimes of long-range acoustic coupling only. When the Green’s

function c0nsists of Ga alone there exists no banding structure and algebraic decay of some form is

predicted for all frequencies. When GAE) ~ l/cc2 it is predicted that IFnI ~ (n¢)'2 as ln| —> 00.

For the other two cases the analytical prediction is that |Fn| ~ |n[‘% as |n| —> DC.
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Numerical simulations, under the influence of long-range acoustic coupling only, have been able to
verify these results including the detailed predictions for the coefficients as well as the decay law.
In order to highlight the behaviour at manageable values of N a scaling parameter, A, was inserted
into the Green’s function so that G(a:) = AGa(:c). In the simulation for Ga given by Eq.( 4) a wide
range of A values, both above and below unity, were considered. This can be justified as more than
a numerical scaling since A effectively scales the fluid loading parameter 5 which can takes a wide
range of values depending on the material of the structure and the surrounding fluid. For large
|n| the solution was found to be in agreement with the analytical prediction. However, for small

. . . . _1 . .values of A and/or 71 numerical Simulations Indicate that an| ~ |n| 2 which eventually gives way to
the [ml-i decay if |n| becomes large enough. The |n|‘i decay has not yet been identified analytically.

In the fluid-loading regime where Ga(z:) ~ 1/12 the combination of G, and Ca still gives rise
to some sort of banding structure where the behaviour of frequencies in the previously defined pass
and stop bands clearly differs. In the stop bands a period of initial exponential decay occurs which
is found to follow the decay curve of G5 alone. As progression is made along the array away from
the source the acoustic part of the Green’s function starts to become dominant. Exponential decay
eventually gives way to the slower algebraic decay associated with Ga only. i.e. |Fn| ~ lnl'2 at large
n and the coefficient of the Inl‘2 decay is close to that found when G,7 is entirely absent.

The behaviour in the pass-bands produces some distinctive results when Ga is included. For central
pass-band frequencies where, for G5 alone, energy is transmitted without attenuation, the inclu-
sion of Ga generates a periodic response in the forces along the array. Although there are large
fluctuations in [Fn|, substantial transmission of energy remains, and in contrast to the stop-band
results the algebraic decay associated with Ca never dominates. At off-centre frequencies similar
behaviour is observed. The period of the response is found to be independent of the number of ribs
but increases as the order of the pass band increases. '

The inclusion of G, in the other fluid loading regimes appears to completely destroy any pass/stop
band frequency structure. With G;l given by the expression in Eq.( 5) results show a period of
exponential decay at all frequencies which then develops into lnl'i algebraic decay if In] is large
enough.

At present there is no analytical treatment for the pass-band behaviour with Gs and On com-
bined.
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3. IRREGULAR STRUCTURES

Although some structures can be defined as having strict periodicity in rib alignment it is often

likely that some irregularity occurs as a result of faults in manufacture or because of constraints im—

posed in the design of structures. When the structure consists of ribs which are displaced randomly

from a strict periodic arrangement the response of the structure, if only the subsonic component of

the Green’s function is included, becomes exponentially localised (Sobuack & Crighton [2]). This

phenomenon, known as Anderson localisation, destroys the strict banding structure associated with

periodic arrays. ‘

The basic construction of this problem is the same as that described for the periodic array of

ribs except that each rib is now displaced by a small random amount, um. Since the rib locations

are chosen randomly it is usual to gauge the effect of irregularity by averaging over a large number

of realisations for the um. Thus the matrix equation is solved numerically for a large number of rib

configurations and the average of those results is taken to represent the general structural response

for a given degree of irregularity. The logarithmic (or geometric) average is used in preference to the

arithmetic average because the latter can be heavily weighted by certain realisations which exhibit

degrees of symmetry but which only occur very rarely (Hodges & Woodhouse [3],[4]).

The effect of extended disorder on the long—range coupling mechanism (where the Green's func-

tion is taken to consist of Ga) only was studied and numerical results indicate that the long-range

acoustic coupling mechanism is remarkably insensitive to any degree of irregularity, both on average

and for individual realisations.

In combining G, and 0,, for the irregular array two competing mechanisms exist 2 (i) exponen-

tial localisation in pass bands due to irregularity, (ii) slow algebraic decay at all frequencies due to

long—range coupling which is insensitive to irregularity.

In the pass band frequency range, calculations show that near to the source of excitation irregularity

induces exponential decay as it would for a strictly periodic structure. This, however, ultimately

gives way to algebraic decay following the decay law which would occur for Ca alone with or without

irregularity. Increasing the order of the pass band generally results in the exponential decay extend-

ing over a shorter number of ribs. This kind of behaviour is similar to the stop-band characteristics

for the regular array. Stop«band behaviour is found to be only slightly modified by the presence

of irregularity. Any modulation arises because extended disorder tends to slightly delocalise the

exponential response associated with the 0, component in the stop band.
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