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1. INTRODUCTION
 When an active signal processing system is being designed, it is frequently assumed that the
echo is comprised of returns from surface highlights and can be modelled as the sum of delayed
and attenuated replicas of the signal.  For some targets and some operating frequencies, the
model is invalid either because the target has been set vibrating by the pressure wave, for
example fish swim bladders or the signal travels around the target, and adds to the direct echo as
in for example, wrecks.  In such cases, a better model is the sum of a perfect reflection from a
rigid or soft boundary and an elastic response.
 A single resonance can be modelled as a second order linear filter with an infinite impulse
response.  The highlight model has a finite impulse response.  As was found from research on the
linear filtering of chaotic time series at RSRE Malvern in the early 90's, the two different types of
filter produce distinct effects.  Some properties of the input are not recoverable with the IIR filter
[1].  Building on this, it was conjectured on the basis of arguments from non-linear dynamics, that
when a resonant target is excited by a chaotic signal it would produce bursts of energy at
apparently random intervals [2].  Numerical experiments established that bursting does occur [3],
and afterwards it was observed in electrical and acoustic signals in ultrasonic experiments [4,5].
 A natural question to ask is how this behaviour compares with the response to frequency
modulated and pseudo-random noise signals.  A partial answer is given below.  In seeking to
understand the causes and characteristics of chaotic bursting, an interpretation of the dynamical
systems explanation in terms linear systems theory has emerged.
 The next section introduces the signal types used and discusses issues which arise in carrying
out the numerical experiments.  It then shows the resonant response to LFM, PRN and chaotic
signals.  The implication for detection and classification are discussed in section 3.  An analytical
model for chaotic bursting is developed in section 4.

2. SIMULATED RESPONSES TO CHAOTIC AND STANDARD SIGNALS

2.1 Signals considered
 Chaotic signals are generated by non-linear systems which are sensitive to initial conditions, by
which two solutions starting from nearby points diverge as time increases.  The signal used here
is generated by the Duffing oscillator

 && &y y y y t+ − + =b Fcosd
3 ω .                                                 (1).

 As will be seen, chaotic signals have broadband spectra, comprising both lines and continuous
components.  Two conventional sonar signals with broadband spectra are linear frequency
modulated carriers and pseudo-random noise.  White pseudo-random noise is generated as a
sequence of uncorrelated random numbers. To model the effect of the amplifiers and transducers,
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this sequence is averaged using a moving window to give a triangular correlation function with a
(sinx/x)2 spectrum at baseband which is used to modulate a carrier. The LFM signal is given by

 y t t t T t T( ) cos( ), / /= + + − ≤ <ω β φ0
2 2 2                                                (2)

 Examples of this signal with unit power signals are shown in fig 1.  For the Duffing signal, bd = 0.3,
F = 0.5, Ω = 1.2 rads/s.  For the PRN signal, the carrier frequency is ωo = 0.4, and for the LFM
signal, ωo = 0.4, β =8x10-5/π , φ =  0.  In each case, T = 100*2π/ωo.

 

2.2 Calculating the elastic response
 The simplest case of an elastic response is a driven mass-spring oscillator.  If y(t) is the signal
and x(t) is the echo, then

 ( )+ + =&& &x bx kx y t                                                                (3)

 where b and k are the damping force per unit velocity and restoring force per unit displacement
respectively.  Representations which are equivalent to (3) are convolution in the time domain
using the target impulse response g(t),

 x t g t y d
t

( ) ( ) ( )= −z τ τ τ
0

                                                       (4)
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 and in the frequency domain, using the target transfer function G(ω) with the Fourier transforms of
x(t), and y(t) given by X(ω) and Y(ω)

                                                         X(ω)=G(ω)Y(ω)                                                                       (5)

 From (3),

   G ib k( ) ( )ω ω ω= − + +1 2                                                      (6).

 When the oscillator is underdamped, (6) has a peak at approximately ω r k b= − 2 2  and 3 dB

bandwidth of ∆ω = −k r r
2 4ω ω .  The quality factor Q is ωr/∆ω .

 In calculating the response, any of these representations may be used.  The chaotic signal is
found by integrating the differential equation shown in (1), and (3) is the most convenient.

2.3 Comparison and discussion of behaviour
 To demonstrate bursting, the resonant responses of a target with a resonance at ωr = 0.4 rad/s
and a quality factor of Q = 50 are calculated. These are shown in fig 2. .  It should be emphasised
that these plots are samples from aperiodic oscillations and much different behaviour may be
observed in different observation windows.

 



 Proceedings of the Institute of Acoustics  Fenwick & Butler                     Resonant Targets
 

 Vol.26. Pt.5. 2004 (Sonar Signal Processing)
 Vol.26. Pt.6. 2004 (Bio Acoustics)

(This Footer space should remain blank - reserved for u
the I.O.A.)

 

 The response to the Duffing signal behaves in a complex manner.  There are regions where the
envelope ramps up or down, e.g. near t = 500.  Near t = 0, there may be beats.  The PRN
response also shows short term increases in energy.  For the LFM drive, the output envelope
increases to a maximum which is preceded and followed by beats.   These results can be better
understood by referring to the spectra for the signals shown in fig 3. Note that the spectra for the
Duffing and PRN signals are averaged over eight subwindows to reduce fluctuations.

 
 The target resonance lies within a plateau in each of the spectra, hence there is a strong signal
component at the target resonant frequency. The envelope fluctuations may reasonably be
related to the response of a linear oscillator being driven at its resonance.  None of the responses
reaches a steady state, because, referring to fig 1, the signal changes frequency or phase too
frequently. The peak value and the times to reach it are related to the Q of the resonance.

 In fig 4, the spectra of the echoes are plotted.  Those for the Duffing and PRN signals are
averaged over eight subwindows.  The target transfer function G(f) is highly peaked and (5)
suggests that the echo spectra will have a peak at the resonance.  Fig 4 shows this is the case.

2.4 Multiple Resonances
 When there is more than one resonance, each will cause bursting at a level determined by the
spectrum of the input signal and the Q of the resonance.  Each contribution will add or subtract
from the others.  The resultant envelope may have much larger excursions or much smaller ones
than for a single resonance and be very complex overall.
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3. IMPLICATIONS FOR PROCESSING
 The first problem is to detect the echo and the first choice for processing is to cross-correlate the
returns with a copy of the signal.  For a point target in stationary white noise, this produces the
maximum signal-to-noise ratio, and is statistically optimum in Gaussian noise.  For coloured
noise, or a more complex target which produces a modified waveform, there will be a correlation
loss. Fig 5 shows the result of cross-correlating the echo from with the signal in each case. The
maximum correlation is less than 1, thus the signal-to-noise is reduced, the peak is shifted from
zero relative lag and there is an error in range determination.

 
 The loss may be recovered if the signal copy is adjusted to account for the target response.  For
an unknown response, a set of filters, each matched to a particular target, can be used.  This
principle allows a target with multiple resonances to be detected.  By analogy with high range
resolution processing, where the echoes from multiple highlights may be resolved using a signal
with sufficient bandwidth, a long enough window would allow high frequency resolution processing
to resolve resonances.
 If the signal-to-noise ratio is high enough, a direct estimation of the target impulse response or
transfer function might be attempted. This is a system identification problem.  If analysis is
performed in the frequency domain, the target transfer function is estimated by finding the ratio
between the received spectrum and signal spectrum.  A method of non-linear system identification
[6] has been shown to be capable of extracting the centre frequency and bandwidth of a linear
filter driven by a chaotic signal [7].
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4. ANALYTICAL MODEL FOR CHAOTIC BURSTING
 If the Duffing waveform is examined closely, it appears to be constructed from sections of periodic
oscillation, punctuated by rapid changes.  A model for the bursting resulting from this behaviour
can be constructed by assuming that the signal comprises sine wave sections each with constant
amplitude, frequency and phase, but switching one or more at the start of the next section [8].
This simple model produces all the types of behaviour seen in chaotic bursting.

4.1 A linear oscillator with input discontinuities

 Consider a simple damped oscillator with unit mass, damping b and spring stiffness k = ω 0
2 .

Let the displacement and velocity at time t be x t( ) and &( )x t . Consider a drive comprised of N

sections such that the i th'  section lasting from time ti  to 1+it  is a cosine wave with amplitude ai ,
angular frequency Ωi  and phase ψi .  The response of the system is given by

 ( ) ( )( )2
1

1
, , cos

N

o i i i i i i
i

x bx x W t t t a t tω ψ+
=

+ + = Ω − +∑&& &                              (7)

 where                          W t t ti i, ,+ =1 1b g     for    t t ti i≤ < +1

 = 0   otherwise                                                                     (8)

 with initial conditions x t X1bg= and &x t U1bg= .  A clearer understanding emerges if the
response of undamped systems is considered first.

4.2 Behaviour of an undamped oscillator
 Two cases will be studied, the first when the sine wave drive frequency is equal to the filter
resonance and the second when it is offset from the resonance.  The filter resonant frequency is
ω ad/s.  The other quantities are as just defined, dropping the subscripts. It is only necessary to
consider the behaviour of the filter response with a single section of drive.

 When Ω = ω , the system equation is

 && cos( )x x a t+ = +ω ω φ2                                                                   (9)

 with  initial conditions x X x U( ) , &( )0 0= = . The envelope E t( ) of x(t) is given by [8]

 E t at U a X X U a2
2 2

2 2 2
( ) cos sin sin cos sin sin

= + FHG IKJ+
F
HG

I
KJ

RST
UVW+ − −FHG IKJRST

UVWω
φ

ω
φ

ω
φ φ φ

ω
φ

ω
        (10)

 The solution holds for 0 ≤ ≤t T , where T  is the length of time for which the drive is applied. The
second term in brackets is independent of time, and the square of the envelope is a hyperbola
with axes t = 0 and E = 0. If the combination of parameters is such that the second bracket
vanishes, the hyperbola degenerates into a pair of straight lines.  When the drive term changes
(φ or a changes), a change is initiated in the envelope which depends on the values of x and dx/dt
at the time of the change.

 When Ω ≠ ω , the system equation is

 && cos( )x x a t+ = +ω φ2 Ω                                                                       (12)
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 with initial conditions x X x U( ) , &( )0 0= = .  With frequency difference,δω ω= −Ω , the
envelope E t( )  is given by (see [8]):

 E t M C MC t2 2 2 2( ) cos ( . )= + + + +δω φ ψ                                               (13)

   where      M X C U C2 2
2

21
= − + +( cos ) ( sin )φ

ω
φΩ , C a= −ω 2 2Ω                (14)

 and                          sin ( sin ) cos ( cos )ψ φ ω ψ φ= + = −U C M X C MΩ  ,                (15)

The only time varying term in (10) is the last and the envelope is modulated by a beat frequency.

4.3 Behaviour of a damped oscillator
 The system equation is

 && & cos( )x bx x a to+ + = +ω φ2 Ω   with  x X x U( ) , &( )0 0= =                         (16)

 The envelope E t( )  of the solution is given by:

 E t e H K e HK tbt
bt

2 2 2 22( ) cos( . )= + + + +− −
δω φ ψ                                    (17)

 where                         H A B K a

b
2 2 2 2 2 2

2

0
2 2 2 2 2

= + = + =
− +

, α β
ω Ω Ωd i{ }

 ,                  (18)

 A X= − +( cos sin )α φ β φ ,                                                                   (19)

B U b X= + − + − +
1

2ω
α φ β φ

ω
α φ β φ( ( sin cos )) ( ( cos sin ))Ω                         (20)

 α ω= −D o( )2 2Ω , β = DbΩ ,  cos , sinψ β α ψ α β
=

+
=

−A B
HK

A B
HK

.          (21)

           D a b= − +ω 0
2 2 2 2 2Ω Ωd i{ }                                                                  (22)

 It follows that E t( ) lies within the bounds | |e H K
bt

−
±2 .  The first term depends on the initial

conditions, and the second on the drive frequency and the resonant frequency. As time increases
the initial conditions are forgotten as can be seen from (17), and the envelope oscillates at a beat
frequency as it decays to a constant level. At each change of the driving force (Ω, φ or a) a new
envelope will arise, which may be larger or smaller than the previous one.  It should be noted that
the envelope is determined by the initial conditions X  or U ,  and also by α β φ, , and Ω .

4.4 Numerical examples

 Fig 6 shows the responses of two resonant targets to a switched sine wave.  The first is as before,
ωr = 0.4 rad/s Q = 50 and for the second ωr = 0.4 with no damping. These are labelled 1 and 2
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respectively.  In figs 6(a) and (c), the effects of suddenly increasing signal phase by 3π/4 at the
resonant frequency are shown.  In the undamped target (fig 6(a)), the envelope of the response is
initially a pair of straight lines, but after each phase switch, the envelop is comprised of the two
branches of a general hyperbola.  The effect of the damping shown in fig 6(c) is to superimpose
an exponential decay on the rises and falls, preventing growth without limit. In figs 6(b) and (d),
the amplitude and phase are constant, but the frequency steps from 0.36 to 0.4 then to 0.44.  In
fig 6(b), where there is no damping, the envelope initially shows beating at the difference ωd – ωr
between the drive and resonant frequencies.  On switching the drive to the resonant frequency,
the envelope grows in level until halted by the switch up in frequency.  The third section shows a
cosine modulation of a constant envelope at the difference frequency ωd – ωr.  When there is
damping, as shown in fig 6(d), the beats are smoothed out and the oscillation eventually decays
to a level determined by the filter transfer function.

 
 Simulations with switches in amplitude produce changes in the slope of the envelope.  The
envelope always increases if the filter is undamped.  With damping, a switch causes a short term
increase which decays until the next change.

4.5 Non-linear dynamical systems theory explanation
 The sudden changes in the chaotic Duffing signal associated with bursting in the echo are due to
changes in the stability of the oscillator arising from the non-linearity.  For a time, the oscillation is
stable, but sooner or later, it reaches a combination of position and velocity for which the system
becomes unstable, and a sudden change occurs as it seeks a new region of stability.  This
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behaviour has been studied for discrete time systems [9], was conjectured to hold for continuous
systems [2] and has been demonstrated here.  The loss in stability is associated with an increase
in the so-called short-term Lyapunov exponent.  The long-term Lyaponuv exponent measures the
average rate at which two time series starting at nearby points diverge from each other.  A precise
definition requires careful attention to detail [10], but can be illustrated as follows.  Consider x(t,x0)
and x(t,x0+δx) which are two starting points for a system, and let the difference between the two at
a later time  ∆x(t) = |x(t,x0) - x(t,x0+δx)|.  While ∆x(t) << 1, ∆x(t)  ≈ ∆x(0)eλt where λ is the Lyapunov
exponent. It should be noted that these arguments apply generally to any dynamical system and
the switched sine wave model is also not restricted to the Duffing system.

5. CONCLUSIONS
 Bursting can occur in the echo of a resonant target for noise-like broadband signals whose
average spectra have significant energy near the resonance of the target.  It was also shown to
occur for sequences of sine waves with switched phase or frequency.  There is a small correlation
loss in the matched filtering of the bursting echoes considered.
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