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1 . INTRODUCTION

This paper reviews the initial stages of research into a novel application of Hidden Markov
Models (HMMs) for automatic speech recognition. The research aims to tackle multi-speaker
recognition by tuning or 'personalizing' the models at recognition time into those of a speaker

. whose voice is similar to that which generated the utterance. Such tuning calls for an efi‘ective
. l-lMM-adaptation algorithm, and efibrts to date have been directed at developing a suitable

algorithm:— Asa consequence of this work. some interesting features of the mathematics of
- Hidden-MarkovModels have come to light. Among these. there are indications that HMMs can

be-identified which are globally optimal with respect to the training data...so—called Optimal
Feasible Hidden Markov .Models.

Afier presenting the necessary background, this paper gives a descriptive account of the current
progress.

2‘ BACKGROUND

Historically, there have been two main approaches to ASR (see Fig 1). in the cognitive or
Knowledge-Based approach [I]. one attempts to elicit and to automate the rules used by
knowledgeable experts. Alternatively. in the information-theoretic or Template Matching
approach [2]. a collection of prototypical patterns are collected into a reference memory. Then a
sample utterance is compared against these patterns. and a classification is made based upon the
'best’ match. Recently. Neural Network recognizers have come along [3] which bridge the gap
between the older approaches. The neural network performs a type of matching based upon
features that it ‘leams‘ by itself from the training data.

Hidden Markov Models (HMMs) belong to the template matching approach, but are generally
superior to the other members of that family. Typical template matchers cluster the training data
and retain the collection of centroids. which comprise the reference memory. but thendiscard
other available information. such as the distribution of the clusters about their centroids. 0n the
other hand. HMMs are able to incorporate this extra information and. consequently, tend to

. achieve better results.

A Hidden Markov Model can be viewed simply as a special type of finite state machine which
does not depend upon external inputs. instead. the transition between states is a random process
that satisfies the Markov property. whereby the state at time I depends only upon the previous
state. The sequence ofstates through which the model passes is not directly observable (hence
the term 'hidden‘). However. at each discrete time I . upon entering a state. the model emits a
signal which is observable. The signal which is emitted is also random. with the choice of output.
controlled by a different random process per state.
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Ifthere are N States, and if the total collection of possible outputs is limited to a set of M

discrete symbols, then an HMM can be specified in terms of three matrices:

an NxN matrix oftransition probabilities, A , where element 0,, gives the probability

ofmoving from state i to state j

an NxM matrix of output probabilities. B , where element b“ gives the probability

ofgenerating output k from within state j

and an Nx 1 initial state distribution vector, p , where element p, gives the probability

ofstarting off in state i

In using an HMM to model data. one assumes that the process which generated the data was

itself an HMM . and then attempts to guess the model parameters (i.e. matrix elements) of the

underlying HMM . Awarding to the usual criterion, the best model for a set of data is the triple

(A, B, p) which exhibits the greatest probability that the observed dataMm observed.

To carry out speech recognition a library ofW5 is constructed, with a model for each item

(word, syllable, phoneme, etc.) in the vocabulary. A test pattern is compared against the

reference HM'Ms by computing the probability that each HMM might have generated it. The

HMM which exhibits the greatest probability is deemed the best match, and the test pattern is so

classified.

The difficulties for automatic speech recognition can be summatizedin terms of the two

'dimensions‘ shown below (Fig 2) . Where the characteristics of only a single speaker are

involved, and the words are separated by clear gaps, systems can achieve high levels of success.

But as the number of speakers or the fluency of the speech increases, recognition accuracy falls

ofi‘dramatically.

The current research is focussed on the multi-speaker dimension of the problem, with the goal of

developing recognizers which perform equally well for more than one speaker.

An obvious way to try to achieve speaker independence is to incorporate training data fiom

multiple speakers into the models, with the intention that the resulting set of models will capture

the characteristics of an 'average' speaker. Fonunatcly, existing HMM training algorithm can

acccomodate a population of Speakers However, while it is clear that some sort of averaging

takes place. it is also clear that the results are not those of an ‘average' speaker, but something far

more vague. Furthermore.any averaging inevitably leads to a 'blurring' or 'smearing' effect, and it

is natural that this would impair the recognition accuracy '

In terms of accuracy, the best solution would be to score the unknown utterance against library

models that were derived from a voice which is as similar as possible to that which generated the

unknown utterance. Clearly, one approach would be to have a separate library for each possible

speaker. This would reduce the multiple speaker problem to the single speaker case, However

not only is this unmanageable in practice. but it is not a solution when the speaker is unknown.
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The approach which this project is adopting is to train the set of models to a population of
speakers, but then to transform the models at recognition time. This tuning would have the effect
of quickly 'personalizing' the models into those of a speaker whose voice is similar to that which
generated the utterance. rather than that of an average speaker.

3. WORK AND PROGRESS TO DATE,

3.1 Adaptive W
A critical part of model-tuning is the ability to adapt HMMs incrementally. For example. having
established within a reasonable certainty that the last uttered word was 'dog”, one should then be
able to use that utterance to update the “dog” model (and perhaps a few other models)
accordingly. in this way, the library HMMs would converge to a personalized set of models.

Unfortunately, the existing algorithms for building HMMs don't lend themselves to incremental
model-building/adaptation. For example, the classic Baum-Welsh method performs a 'batch'
calculation of the matrix elements using the assembled training data. If more data then comes
along, the model has to be scrapped and the calculations performed again.

Eventually, the right sort of algorithm surfaced item the area of Wsual Pattern Recognition
[4,5,6]. Given an HMM derived fi-om observations up through time I- l . and assuming that at
time t the In "‘ symbol is observed, then the elements of the A and B matrices are amended
according to a given set of update formulas

However, upon careful examination two important weaknesses became apparent :

(A) The procedure is somewhat 'ad hoc‘. lacking in theoretical foundations

(B) The formulas appear not to be mathematically sound. Essentially. their
derivation misses the distinction between independent events and those
which are conditionally independent [7]

3.2 HMMs as Neural Nets
While the above sources failed to provide anacceptable approach to adaptive HMMs , they did
make an important contribution. The remaining HMM literature (see [8]) focusses exclusively
on the three operations of

Learning Given a body of training data derived from some real-world
process. to compute the parameters of the HMM which best
models that data

Classification Given an observation sequence and an HMM , to calculate
the probability that the sequence was generated by that HMM

Explanation Given an observation sequence and an HMM . to determine
the sequence olhiddcn slates through which the HMM passed
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while generating the sequence

The Gong paper [4] highlights a fourth operation, namely:

Generation Given an HMM , to predict the sequence of its states as well as
the sequence of observations it is likely to generate

We know that it gives the N-element vector of probabilities that the model is in state I at .
time r= l . In a similar way, the calculation (atH )‘ngenemtes the N-element vector of
pmbabilities that the model is in state j at time I . Furthermore, the calculation B'(A“)'n
generates the M- element vector of probabilities that symbol k appears at time t .

It was then recognized that this operation could be modelled as a neural network. Ifthe ante
probability vectors at times t - l and I , as well as the output probability vector, are each
represented as a layer of nodes, then the HMM is entirely equivalent to the special type of l
recurrent neural network shown in Fig 3 (see [9]) . The connection weights between the input ‘
and hidden layers constitute the A matrix. and the weights between the hidden and output layers
constitute the [3 matrix.

   

 

Finally, consider the M-element vector D, consisting of all zeros except for a single 1 to indicate
the codebook symbol actually observed at time I . This gives the desi_red output from the network
at time t, as opposed to the predicted output given by the calculation 8' ( A” )' 1t . By adapting
neural network training algorithms (e.g. hack-propagation), using the collection of D, vectors as
the training data, a new method was suggested for building and adapting HMMs incrementally.

 

  
    

  

 

As a technique for training neural networks, back-propagation is very slow, requiring numerous
passes through the entire body of training data ('epochs') in order to converge Fortunately,
unlike normal nodes which apply a non-linear transfer ('squashing‘) function to their inputs, the
above nodes are strictly linear. which implies that a direct solution for the connection weights
should be possible.

   
  
     

 

A preliminary analysis tended to confirm the existence of a direct solution based upon the full
training data. and also suggested that a straight-forward method exists to build/adapt solutions
based upon individual data. The fact that sums of the outer products of the input vectors are
positive definite (almost surely) permits application of the Matrix Inversion Lemma (10] which
yields a formula for incrementally updating the required matrix inverse. The entire procedure is
similar to the Recursive Least Squares method for adaptive filters.

 

  
    

    
 
  

 

3 .3 Matrix Derivatives
The previous analysis suggesred how one might derive an algorithm to incrementally build/adapt
HMMs .

   

   

 

Let a  sly), — B‘(A")'1rll:  
Iolnl squared error bcinrcu desired and predicted probabilin vectors
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In outline:

(A) Find the (A, B, i: ) values which minimize 9 over the first 7' training data
(B) Find a similar solution for the first T+ 1 data
(C) Determine how to use the new data DM to convert the first solution into

the second

Note the similarity with Linear Prediction, where one tries to minimize

f = )_:[x. — [war

with H = [h,h,...hp]'
X» = [xn-ka3'uxl-‘l.

The procedure is:

(A) Calculate the partial derivative of f with respect to each of the unknown filter
coefiicients h, and equate the individual derivatives to zero

(B) Bundle the resulting set of 1: equations into a single matrix equation

ofthet'orm = 0'

(C) Solve the matrix equation for H

However, in contrast with the Linear Prediction case. HMM model-building involves 3 matrix
unknowns and the difl'erenliation of 4 with respect to a total of N“ +MN + N matrix
elements, before they are eventually bundled into a system of 3 simultaneous matrix equations.

Clearly it would bean advantage to be able to derive the matrix equations = 0 directly,

without having to calculate the individual partial derivatives. This bundle (array) of partial

Iderivatives is one possible definition [I l, I 2] ofa 'matrix derivative' : :7, = (q)

The next step of the research was to assemble. and in some cases derive, a set of tools by which
these matrix derivatives could becalculated.

3.4 Optimal Feasible HMMs
Given the ability to compute matrix derivatives, the way was clear to attempt to minimize

t- = slur—Irw-Ynfl’
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as per the previous discussion. Eventually a solution was found and, fueled by this success,

attention was then directed at the customary (but much more challenging) HMM objective

flirtation [13]

Maximize P(o,oz..o,) ~ l'Diag(BD,)A'...A'Diag(BD,)A'Diag(BD,)1t

The analysis yielded these interesting results : l

(A) Within the interior of the solution space, a simple test distinguishes locally

optimal triples (A, B, It ) "namely, the expression

L = Diag(BD,)A Diag(l?l):)A A Diag(BD,) I

must produce a column vector of identical values

(B) I Among those feasible solutions. an upper bound exists on the value of the

objective function P(o,n,..a,)

(C) Feasible triples can be identified which achieve this upper bound and are therefore

‘globally' optimal within the interior ofthe solution space

3.5 Generalized Linear Programming

It must be emphasized that the solutions thus found are only 'globally optimal within the interior

of the solution space. In fact, superior triples are generally to be found on the boundary of the

solution space. analogous to end-point maxima. The search for a true global optimum thus

requires a methodical procedure for searching the boundary,

In the case of a linear objective funcrion which is defined on a convex solution space, the

theorems of Linear Programming show that the global optimum always occurs at a vertex of the

solution space Furthermore. to locate the optimum, one starts at any vertex and examines the

edges emanating outward from it. to find the edge along which the objective function increases

nioa rapidly. One then advances along that edge to the next neighboring vertex and repeats the

procedure. until there is no increase along any edge. which signals that the current vertex is the

optimal one.

In the present task. the solution space is convex but the objective fiinction is far from linear.

Nevertheless, some early work suggests that close parallels may exist with the linear case:

Firstly, it is possible to distill down the boundary planes into a collection of 'conceptual vertices',

and to define a neighbor relationship among them (i.e. Vertex A is a neighbor of Vertex B).

Secondly, one can specify a procedure to evaluate the objective improvement on the outgoing

edges. Finally, advancing along the steepest edge appears always to produce a solution which is a .

true global optimum to the HMM training task.
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4. FUTURE WORK

Much more work remains before the goal of tunable Hidden Markov Models has been achieved.
The immediate objectives focus on the methodical search for optimal models around the boundary
of the solution space:

(A) Derive a mathematical proof that the strategy described above will always
lead to a global optimum

(B) Simplify the process of evaluating the conceptual edges, which currently involves
optimizing fragments of the original objective function (Geometric Programming
is being investigated for this purpose.)

(C) Diseem how the global optimum solutions change from problem to problem
as additiOnal data are included
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Fig 2 'Dimensions' ofDill‘tculty

Fig 3 Two Views ol'nn “MM-equivalent Nettrttl Network
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