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1. INTRODUCTION

Although the method of acoustic pulse reflectometry (APR) for the reconstruction of an unknown
duct system has been described in previous work (see, for example, Amir. et al [1], Sharp and
Campbell [2], and Kemp et al [3]), little attention has been given to the a priori estimation of the
transient input impulse response. However, it is known that the derivation of such a quantity from
experimental measurement of the incident and reflected waveforms is an ill-posed problem, as was
demonstrated clearly by Sondhi and Resnick [4] for the vocal tract inversion. In section (2) below,
the nature of the ill-posedness is recapitulated; section (3) illustrates, with reference to
experimental data, the typical consequences for APR methodologies. A solution for the input
impulse response, regularised by truncating the singular value decomposition of the convolution
matrix, is presented. A stable reconstruction of a stepped-tube system is successfully obtained.

2. ACOUSTIC PULSE REFLECTOMETRY: DEFINITION OF THE
ILL-POSED INVERSE PROBLEM

For a linear transmission system, the relationship between the unknown input impulse response,
z(f), and the measurable input, x(f), and output, y(f), signals is

4

y(t) = Ix(ﬁ - )z(r)dr

o 0t =T ™)

’

The output wave is often described as a convolution between ‘source’ and filter’ functions, and,
therefore, the determination of the filter, z(f), requires a deconvolution operation. In the Fourier
domain, this may be achieved by pointwise division along sample points, with amplified values and
large percentage errors entailing as x(f) approaches the limits of experimental resolution. The
problem can be quantified more precisely in the discrete time domain, since equation (1) can then
be written in terms of sampled vectors, y, z, as

y =Xz, ()

where X is a lower triangular matrix with elements

Xij = x(H) 22 J (3)
=0 i 'Cj.

The deconvolution then takes the matricial form
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z= X'1 Y, (4)

and the stability of the solution depends on the conditioning of the input matrix, X. A condition
number can be defined through the singular value decomposition (SVD) of X, which yields

X=USV, (5)

where U and V are the orthonormal left and right matrices of singular functions™, with columns uj, vj
respectively, and a diagonal matrix, S, holds, in order of decreasing amplitude, the singular values,
s(j), of the system. An input vector of N samples defines a condition number, cond=s(1) / s(N), and
ill-conditioning, by which small experimental uncertainties in x(f) propagate through to large errors
in the solution of equation (4), is defined by a condition number large with reference to unity. The
inverse mapping from measured reflections to filter function is then an inherently ‘ill-posed’
problem.

3. REGULARISATION OF THE BORE RECONSTRUCTION

Standard APR experimental protocol was applied to a stepped-tube system, and 2048 samples of
the incident and reflected waveforms were acquired at a rate of 44.1 kHz, giving a Nyquist limit of
22.05 kHz. The digitised incident pulse was used to define a correlation matrix, X, according to
equation (3). A decomposition of the resulting 2048 x 2048 matrix yielded the set of singular values
shown in figure (1). Due to the vanishingly small amplitude of the higher-order singular values, the

condition number was found to be of the order of 1020, indicative of extreme ill-conditioning due to
the bandwidth-limited (~200-8,000 Hz) loudspeaker response and low signal-to-noise ratios in the
out-of-bandwidth components. (Experimental solutions for this problem are proposed in [7]). A
‘truncated’ singular value decomposition (TSVD) (see [4], [5]) was immediately suggested as a
regularisation procedure; it defines the input impulse response as

1 J

z=5F A y U v;. (6)

Setting J=551 delimits a condition number of 43, and yields the transient, z(t), of figure (2). The
slight ripple in the result was expected due to the abrupt truncation of the singular value series. The
result is contrasted with the noise-corrupted waveform obtained from unconstrained Fourier
deconvolution.

The effect of the truncation on the incident pulse is demonstrated in figure (3). Multiplying together
the truncated U, S, V matrices according to equation (5) yields an input waveform from only some
25% of the singular value set, yet the result is scarcely distinguishable from that of the untruncated
matrices (that is, within numerical precision, from the original experimental signal). Qualitative
comparison of figures (2) and (3) confirms that this small change in the input has entailed a large
change in the input impulse response, and that the system is ill-conditioned.

The effect on the bore reconstruction (spatial resolution 3.9 mm) is shown in figure (4). The input
impulse response obtained by Fourier methods produces an unstable profile, whereas the solution
regularised by TSVD yields a stable and more accurate geometry. The residual ripple in the
recovered radius derives from that noted in the input impulse response. Further work will attempt to
minimise this problem by Tikhonov weighting of the truncation of the singular value series. The
underestimation in the bore at widder radii is predictable from the absence, in the current
reconstruction algorithm, of terms accounting for higher duct modes. This issue is currently being
addressed by the authors.
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4, CONCLUSIONS

The effectiveness of the TSVD in regularisation of the ill-posed inversion in acoustic pulse
reflectometry has been demonstrated. The method is complementary to experimental attempts to
increase the bandwidth of the input pulse.

5. REFERENCES

[1]1 Amir N., Rosenhouse G. and Shimony U., “A discrete model for tubular acoustic systems

with varying cross-section -- the direct and inverse problems. Parts | and Il: Theory and
Experiment”, Acustica, 81, pp 450-474, 1995.

[2] Sharp D. B. and Campbell D. M.,"Leak detection in pipes using acoustic pulse reflectometry”,
Acustica, 83, pp 560-566, 1997.

[3] Kemp J. A., Buick J. M. and Campbell D. M. “Practical Improvements to Acoustic Pulse
Reflectometry”, Proceedings ISMA, Perugia, ltaly, pp 387-390, 2001.

[4] Sondhi M. M. and Resnick J. R., “The inverse problem for the vocal tract: numerical methods,
acoustical experiments and speech synthesis”, Journal of the Acoustical Society of America, 73(3),
pp 985-1002, 1983.

[5] Bertero M and Pike E. R., “Signal processing for linear instrumental systems with noise”,
Handbook of Statistics, Vol. 10 pp 1-46, Eds N. K. Bose and C. R. Rao. Elsewer 1993.

[6] Forbes B. J., Sharp D. B. and Kemp J. A., in prep.

[7] Li A., Sharp D B. and Forbes B. J., “Improvmg the high-frequency content of the input signal

in acoustic pulse reflectometry”, Proceedings ISMA, Perugia, ltaly, pp 391-394, 2001.

Footnote

*The singular functions form the basis set of the singular system described by equation (1), and are
distinct from the Fourier eigenfunctions. They are preferred in the analysis of highly-transient
waveforms (see, for example, [5], [6] forthcoming).
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Figure (2). Comparison of z(f) obtained
by TSVD and Fourier deconvolution.
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