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1. INTRODUCTION

A representative account of Babinet's principle applied to optics is given by Brooker1. If light waves 
are considered spatial variations of a scalar function, and a Kirchhoff boundary condition and the 
Kirchhoff integral2 applied, the sum of two wave fields received at a point downstream from two 
complementary apertures, whose opaque and transparent areas are interchanged, where the 
reception point is in the same relation to both apertures, is the same as the wave field from the 
unobstructed wave front. Let the field amplitude at point r in the forward propagation direction from 
an aperture A be UA(r), and the amplitude for the second complementary aperture B be UB(r). In the 
direct geometrical line of propagation from the source, these two components add to give the same 
field that would be observed if neither aperture were present. Away from this line, if no unobstructed 
propagation from the source is received, any field detected when the apertures are present must be 
due to diffraction at the aperture edges. However, since no diffractions would occur if no aperture 
were present, the diffracted field amplitudes from the two apertures must cancel each other, i.e., 
UA(r) = - UB(r). This also implies that |UA(r)|2= |UB(r)|2, so that the diffracted intensities from the two 
complementary apertures should be identical. This description thereby reveals two separate 
statements that summarize Babinet's principle: (a) the aggregate field from two complementary 
apertures is the same as if neither aperture were present; (b) the diffracted fields from the two 
apertures cancel in amplitude, but have the same intensity distribution.


Here, a time-domain description of Babinet's principle is given for the acoustic case. The Biot and 
Tolstoy (BT) closed form, normal coordinate, theory for the acoustic pressure impulse response of a 
rigid wedge3-5, together with a later extension to pressure-release wedges by Kinney et al.6, are 
used to investigate Babinet's principle in acoustics for screens consisting of pairs of horizontally-
opposed semi-infinite half-planes. BT provides exact analytical expressions for the impulse 
response from point-source to point-receiver, and avoids the Kirchhoff approximation. It also shows 
that the impulse response has two causally related, but independently propagating, time-separated 
components: (a) direct arrivals from the source itself, or from images of the source reflected in the 
faces of the half-plane or wedge; (b) diffraction arrivals from the apex of the half-plane or wedge. 
The diffractions always arrive after the direct/reflected signals have passed. By reformulating the 
interaction of the incident field with a screen in the time-domain, these two phenomena become 
mathematically separable, and emerge as the clear physical antecedents for the two statements of 
Babinet's principle summarized above. This approach demonstrates that the statement that the 
aggregate field from two complementary screens is the same as if neither were present applies to 
the direct arrivals, irrespective of the boundary conditions. It also shows how the amplitudes of the 
diffracted arrivals, generated by complementary screens with opposite boundary conditions, cancel 
each other in the forward scattering direction, but have the same intensity. 

2. BIOT-TOLSTOY THEORY


2.1. The BT field equations


BT uses cylindrical coordinates to represent the acoustic field, as shown in Figure 1. The source is 
placed at ( ), and the receiver at ( ), and the wedge angle is . For a rigid 
wedge, with reflectivity  at the wedge surfaces, the impulse pressure amplitude is given by3 


	 	 	  ,	 	 (1)


ro, θo, zo rr, θr, zr 0 < θw ≤ 2π
R = + 1

prig(rr, θr, zr, t) =
2Sρc2

π θw ∑
n

cos νnθo cos νnθr In

Vol. 45. Pt. 3. 2023



Proceedings of the Institute of Acoustics


and for a pressure-release wedge  at the surfaces, and the impulse response amplitude is6


	 	 	  	 	 (2)


where:

	 	 	  ;  

	 	 	     ;	 	 

	 	 	    	 	 (3)

and:

	 	 	    ;


	 	 	   ;


	 	 	   ;


	 	 	   ,	 	 	 	 	 (4)


The parameter   is the axial distance along the apex from source to receiver. The time 
 is the earliest arrival time for a direct source-receiver transmission for given , , and , and  is 

the earliest arrival time for a transmission passing from the source to the apex, and then to the 
receiver.  represents the “strength” of the acoustic pressure source, and  is the density of the 
propagation medium. The parameter , where .




The impulse response solution falls into three time regions. When , no field is detected. When 
, a direct arrival and reflected arrivals may occur. These are delta function impulses 

arriving directly from the source, or from images of the source reflected in the wedge faces with 
amplitudes modified by the appropriate reflection coefficient. They are computable using 
geometrical ray methods. When , a diffracted field typically occurs, which always arrives after 
any direct/reflected arrivals, except when the source-receiver path exactly intercepts the wedge 
apex so that the two signals arrive simultaneously. However, any small finite deviation in receiver 
angle would introduce a time delay between the arrivals. The diffracted signal is generated at the 
wedge apex at the exact moment the incident field reaches it, in order to satisfy the boundary 
condition at the wedge surfaces.


R = − 1

pp-r(rr, θr, zr, t) =
2Sρc2

π θw ∑
n

sin νnθo sin νnθr In ,

In = 0 (t < t0)
= (1/2crorr sin ξ ) cos νnξ (t0 ≤ t ≤ τ0)
= (−1/2crorr sinh η) sin νnπe−νnη (t ≥ τ0),

ξ = cos−1 [(r2
o + r2

r + z2 − c2t2)/2rorr] ( |ξ | ≤ π)
η = cosh−1 [(c2t2 − (r2

o + r2
r + z2))/2rorr]

t0 = (1/c)[(ro − rr)2 + z2]1/2

τ0 = (1/c)[(ro + rr)2 + z2]1/2

z = (zr − zo)
t0 ro rr z τ0

S ρ
νn = nν ν = π /θw

t < t0
t0 ≤ t ≤ τ0

t ≥ τ0
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2.2. Summation expressions for direct/reflected and diffracted arrivals 


When , each term in the summations of Eqns. (1) and (2) can be written as the sum of 
cosine functions, thereby constituting four delta function Fourier series3, i.e.,


      


	 


	         ,	 (5)


where . Equation (5) describes delta function arrivals at the receiver from the source and a 
number of images of the source reflected in the wedge faces.  The combinations of angles , , 
and , correspond to the angular relationships between the receiver and the source and its 
(allowed) images, where  is an integer whose upper value is limited by the condition  in 
Eqn.(4)1, which restricts the propagation paths to the direct path, and those physically realizable by 
means of reflections from the wedge faces.


When , diffraction arrivals from the wedge apex are generally detected. In this case, since 
, ensuring that  in Eqn. (3)3 , the summations in Eqns. (1) and (2) converge, and may 

be conveniently summed and combined to obtain7:


      


	 	 	     ( )	 (6)


where


	 	 	   .	 	 	 (7)


2.3. Overview of the BT time-domain analysis of Babinet’s principle


BT can be used to calculate the aggregate acoustic field due to two complementary wedges. When 
the wedge angle is increased to , the wedges become infinitesimally thin half-plane 
screens. The theory then shows how the different physical characteristics of direct arrivals, and 
diffraction arrivals, directly bear on Babinet's principle in the acoustic case.



Direct arrivals, according to BT, may be 
described using a geometrical approach, as 
schematically shown in Figs. 2(a) and 2(b). A 
direct transmission is represented by a ray 
passing from source to receiver. In Fig. 2(a), the 
ray is not intercepted by the half-plane, and is 
detected. In Fig. 2(b) the ray is blocked by the 
complementary half-plane. In terms of BT, in the 
first case the direct transmission is “allowed”, 
while in the second case it is not. The 
aggregate field obtained by adding the results of 
these two cases is clearly the same as if there 
had been no object interposed between the 
s o u r c e a n d r e c e i v e r. T h i s h a p p e n s 
irrespectively of the particular combination of 
boundary conditions applied at the two half-
planes. The first statement of Babinet's 
principle, i.e., that the aggregate field from two 
complementary apertures is the same as if neither aperture were present, is thus seen to apply to 
the direct arrival, and this appears trivially true once it is explained.


t0 ≤ t ≤ τ0

prig/p-r(rr, θr, zr, t) =
Sρc

4π rorr sin ξ
×

∑
m

[Rδ(ξ + θo + θr − 2m θw) + Rδ(ξ − θo − θr − 2m θw)

+δ(ξ + θo − θr − 2m θw) + δ(ξ − θo + θr − 2m θw)] (m = 0, ± 1, ± 2,…)

R = ± 1
θo θr

2m θw
m |ξ | ≤ π

t ≥ τ0
n > 0 e−nνη < 1

prig/p-r(rr, θr, zr, t) = −
Sρc

8π θwrorr sinh η
×

[R Dν( + + ) + R Dν( − − ) + Dν( + − ) + Dν( − + )] R = ± 1

Dν( ± , ± ) ≡
sin ν (π ± θo ± θr)

cosh ν η − cos ν (π ± θo ± θr)

θw = 2π

Vol. 45. Pt. 3. 2023


Figure 2



Proceedings of the Institute of Acoustics


The later diffraction arrivals predicted by BT have a different and more complicated behaviour, 
shown in Figs. 2(c) and 2(d). For these arrivals, when the diffracted fields of the two half-planes are 
added, the aggregate field depends on various factors, including the source and receiver angles 
and the boundary conditions at the half-planes. For the second statement of Babinet's principle to 
apply, the diffraction amplitudes must exactly cancel to give zero aggregate field. The conditions for 
this to happen are investigated here.



3. DETAILED ANALYSIS OF BABINET’S PRINCIPLE


3.1. Two horizontally-opposed wedges


Consider two horizontally-opposed infinite exterior wedges, 
both with external angle , as depicted here. 
The figures show a slice through the wedges parallel to the 

 plane. The apices of both wedges lie along the  axis 
and would, if both wedges were present at the same time, 
meet at the axis passing through the origin . The right 
wedge has reflectivity  on both upper and lower 
surfaces, and the left wedge is reversely placed on the 
negative -axis, with reflectivity  on both surfaces. 
Figure 3(a) shows the two wedges, and an acoustical 
source. The source angle is denoted  measured 
counter-clockwise from the upper surface of the right 
wedge, and  measured counter-clockwise from the lower 
surface of the left wedge. Figure 3(b) shows the same two 
wedges, with a receiver located below them. The receiver 
angle is  measured counter-clockwise from the upper 
surface of the right wedge, and  measured counter-
clockwise from the lower surface of the left wedge. For a 
source above the wedges, and a receiver below them, 
simple geometrical arguments show that:


	 	    .	 (8)


Figure 3(c) shows two wedges with a receiver located 
above them, so that:

	 	 	   .	 	 (9)


3.2. Diffraction from a single half-plane (rigid or pressure-release)


The diffracted field generated by a single rigid, or pressure-release, semi-infinite half-plane on the 
right-hand side can be computed by letting  in Eqn. (6), and 
substituting , to give:


	 


	 	 	   ,    	(10)

where , and


	 	 	   .	 	 	 (11)


2π ≥ θw > π

x − y z

O
RR

x RL

θR
o

θL
o

θR
r

θL
r

θL
o = θR

o + π ; θL
r = θR

r − π

θL
r = θR

r + π

θw = 2π ( → ν = π /θw = 1/2)
θR

o , θR
r

pR(rr, θR
r , zr, t) = −

Sρc
16π2rorr sinh η

×

[RRD1/2( + + ) + RRD1/2( − − ) + D1/2( + − ) + D1/2( − + )]
RR = ± 1

D1/2( ± ± ) ≡
sin 1

2 (π ± θR
o ± θR

r )

cosh η
2 − cos 1

2 (π ± θR
o ± θR

r )

Vol. 45. Pt. 3. 2023


Figure 3



Proceedings of the Institute of Acoustics


In the examples shown here, angles are expressed in degrees for the numerical cases considered. 
In all the examples presented, the parameters , ,  are used to 
normalize the calculations for the purposes of illustration and comparison, and to yield  in 
Eqn. (4)2 and  in Eqn. (4)4. The values  and  are also used throughout. Varying the 
parameters , and  would change the values of , and thus the field distribution, via Eqn. (4)2 
and also Eqn. (10), but not affect the physical argument or conclusions reached. 


Figure 4(a) is a polar representation of the angular distribution of the pressure field 
diffracted from a semi-infinite half-plane on the right-hand side, with apex lying along the  axis and 
sides lying in the  plane, where . The source angle is  deg, and the 
direction of incidence is indicated. The circular grid line labeled “0”  marks zero amplitude, so that 
both negative (inside this circle) and positive (outside this circle) pressure variations are shown in 
these plots. The grey curve shows the results for , and the dotted curve the results for 

. Consider receiver angle  deg, in the forward scattering direction. For both 
, as  increases counter-clockwise through  deg, the diffracted pressure amplitudes 

are first negative, pass through zero, and then become positive. The field forms a diffraction lobe 
resulting from the shadowing effect of the edge of the half-plane. To emphasize the angle where the 
shadow region begins, a dashed diametrical line (the “shadow boundary”) has been drawn from the 
source to the opposite side of the plot. A second lobe is seen near  deg. This is associated 
with acoustic reflections from the side of the half-plane closest to the source. A second diametrical 
line (the “reflection boundary”) has been drawn from the reflected image of the source in the half-
plane to the opposite side of the plot. When , the amplitude of this lobe changes sign from 
positive to negative as  increases, but, when , it changes from negative to positive.


Figure 4(b) shows the corresponding diffracted pressure amplitude  for a reversely 
placed semi-infinite half-plane on the left-hand side, where . The source and receiver 
angles are now measured counter-clockwise from the lower surface of this half-plane. Here, 

 deg, and again . Two diffraction lobes are again seen, centred on the shadow 
boundary and reflection boundary. At the shadow boundary (  deg), the amplitude changes 
from negative to positive as the receiver passes into the geometric shadow (note this now requires 
a decrease in ), as was previously observed in Fig. 4(a). At the reflection boundary (  
deg), for  the sign changes from positive to negative as  is decreased clockwise to 
cross the shadow boundary, while for  the sign changes from negative to positive. Both of 
these cases again correspond with the behaviour seen in Fig. 4(a).


c = ro = rr = 1 z = 0 t = 2.000625
η = 0.05

τ0 = 2 S = 1 ρ = 1
c, ro, rr z η

pR(rr, θR
r , zr, t)

z
x − z x = 0 → + ∞ θR

o = 49

RR = + 1
RR = − 1 θR

r = 229
RR = ± 1 θR

r 229

θR
r = 131

RR = − 1
θR

r RR = + 1

pL(rr, θL
r , zr, t)

x = 0 → − ∞

θL
o = 229 RL = ± 1

θL
r = 49

θL
r θL

r = 311
RL = − 1 θL

r
RL = 1
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3.3. Aggregated diffraction from two half-planes with opposite reflectivity


For two horizontally-opposed semi-infinite half-planes, Eqns. (8) and (11) yield8 :


	 	   ;

	 	  ,    		 (12)


where , and , indicate the evaluation of Eqn. (11) using angles , and , 
respectively. For a source of strength  placed in the same location above both half-planes, the 
aggregate diffracted field detected below the planes is, using the relations in Eqns. (12) to cancel 
terms:

	 	 


	 	        ,	 	 (13) 


where  indicates evaluation of Eqn. (11) using (equivalently) either angles  or . 
When , Eqn. (13) returns  identically. Therefore, below the half-plane, the 
aggregate diffracted field vanishes for two half-planes with opposite reflectivity.


For a detector placed above the two half-planes, Eqn. (9) is used in Eqn. (11), and:


	 	  ;

	 	  ,  	 	 (14)


and the aggregate diffracted field detected above the half-planes is:


	   


	      


	          .	 (15)


When ,  Eqn. (15}) indicates that . Above 
the two half-planes, therefore, the diffracted fields of both half-planes are identical, and the 
aggregate diffracted field amplitude is twice that of either of them. 


Figure 5(a) shows the angular distribution of the individual and aggregate diffracted pressure 
amplitudes for two horizontally-opposed half-planes, where  and . For simplicity, 
the angles shown are those corresponding to the right-hand half-plane, while the angles for the left-
hand half-plane are suppressed. The diffracted fields for both planes are plotted individually, for 

 deg (  deg), as in Figs. 4(a) and 4(b) (where again the grey curve shows the 
results for , and the dotted curve the results for ), together with the result of 
directly adding the two fields together (the black curve).  According to Eqn. (13), the aggregate 
diffraction field below the half-planes should be zero, and this is seen in Fig. 5a. Since the two half-
planes cast shadows on opposite sides of the shadow boundary, and there is always a negative to 
positive change in amplitude of the associated diffraction lobes as the receiver passes into the 
geometric shadow, and these angular variations also do not change sign with the reflectivity, the 
diffraction lobe amplitudes for the two half-planes vary in opposition to each other in such a way that 
their sum is exactly zero for all  (or ) below the half-planes. The reverse behaviour is seen 
above the half-planes. Equation (15) indicates that the diffraction fields for the two half-planes 
should vary in an identical manner and reinforce each other when added together. This again is 
seen in Fig. 5a. Therefore, with respect to the diffraction amplitude, Babinet's principle is seen to 
apply in the forward scattering direction, but not in the back scattering direction.
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3.4. Aggregated diffraction from two half-planes with the same reflectivity


For two rigid half-planes ( ), or two pressure-release half-planes ( ), 
where a source of strength  is placed above both of them, substitution in Eqn. (13) shows that 

 below the half-planes, so that the diffraction field amplitudes no longer cancel, i.e.,


	 	 ,	 	 (16)


where . The aggregate diffracted field does not now vanish, and the sign of  
changes with .


Above the half-planes, Eqn. (15) yields:


	 	   ,	 	 	 (17)


 

which is again, in general, non-zero. Note that  and  do not appear in Eqn. (17), so  is 
independent of the reflectivity in this case. 


Figure 5(b) shows the angular distribution of the aggregate diffracted pressure amplitudes for two 
horizontally opposed half-planes of the same reflectivity. The grey curves show the results for: 

, and the dotted curves show the results for: . The angles are those 
corresponding to the right-hand half-plane, and  deg (  deg). The diffractions from 
the individual half-planes are not shown here. While the shadow and reflection boundaries are still 
indicated, the addition of the individual fields causes the large amplitude variations near these 
boundaries in the previous figures to partially cancel, resulting in smoothly varying, but non-zero, 
aggregate fields. Above the half-planes, the curves showing the angular variations for 

 are identical, as indicated by Eqn. (17), while below the half-planes the curves are 
identical in amplitude, but of opposite sign, in agreement with Eqn. (16).


While, for two complementary half-planes of the same reflectivity, the individual diffraction field 
amplitudes do not exactly cancel, Babinet's principle may be shown to still apply approximately. 
Figure 6 shows the individual and aggregate diffraction field amplitudes, below the half-planes, for 
different combinations of the cases previously shown in Figs. 4(a) and 4(b). In Fig. 6 the curves 
from Figs. 4(a) and 4(b) are replotted as standard line graphs, together with the results of 
aggregating them together. The curves labelled with two parameters indicate the aggregate field 
amplitudes for different combinations of boundary conditions. When  and , the 
aggregate field is exactly zero, as expected. If  or , the aggregate 
field is not zero, but is seen to be typically smoothly-varying and relatively small compared to the 
variations of the individual diffraction amplitudes near the shadow boundary.
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This latter result may facilitate experimental applications of Babinet's principle in acoustics. While it 
is possible physically to construct thin screens whose surfaces can be treated as practically rigid, it 
would appear to be very difficult to produce a corresponding screen with upper and lower pressure-
release surfaces. However, this result shows that Babinet's principle may be applicable 
approximately if two complementary rigid screens are used. 


3.5. Variations of the diffraction intensity


For a receiver placed below two half-planes of opposite reflectivity, Eqn. (13) shows that 
, and since the 

sound intensity , the angular distribution of diffraction intensity due to the two planes is 
identical. Above the half-planes, Eqn. (15) shows that , and again 
the intensity distribution is the same. Therefore, with respect to diffraction intensity, when 

, Babinet’s principle applies both in the forward and back scattering directions.


Below two half-planes with the same reflectivity, application of Eqns. (10) and (12) shows that 
, and the intensity distribution of the two half-planes is not 

identical. This is also the case for a receiver placed above the two half-planes.


3.6. Physical mechanism underlying Babinet’s principle in acoustics


In the Biot and Tolstoy3 and Kinney et al.6 theories, the angular variations of the diffracted field are 
described using sinusoidal functions, i.e., either  , or  , in Eqns. 
(1), or (2), respectively. Consider two complementary half-planes as shown in Fig. 5(a), where 

), and  . 


For the rigid half-plane on the right-hand side, Eqn. (1), together with Eqn. (3)3 , yields:


	   ;		 (18)


and for the pressure-release half-plane on the left-hand side, Eqn. (2), together with Eqn. (3)3 , 
yields:


	     .		 (19)
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Due to the the  factor in Eqns. (18) and (19), only odd values of  appear in these 
summations, which are seen to differ only in the sine and cosine factors. For the forward scattering 
case, substitution of  and  from Eqn. (8) in Eqn. (19) gives:


       ;	 (20)


and adding Eqns. (18) and (20) immediately shows that  
identically. This cancellation occurs for every term in the summations, and leads also to the 
cancellation seen for the summed expression, i.e., Eqn. (13), when . 


The values of  appearing in the modal expansion for the two types of half-planes are identical. 
However, as shown, the rigid boundary condition leads to a cosine expansion, and the pressure-
release boundary condition leads to a sine expansion. When an acoustic source is placed in the 
same location with respect to the edges of both half-planes (as in the cases discussed here), for 
every value of  that appears, the corresponding partial waves that physically generate the 
diffraction fields below the two types of half-plane have equal amplitudes but different phases, and 
identically cancel each other when added together.
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