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ABSTRACT

Many impedance models can be used for describing the acoustical behahviour of a road.
These models rely on some intrinsic parameters (2,3 or 4), which are difficult to measure in
the field. Therefore, the measurement of these parameters usually requires to destroy the
structure. This is not always a good way to caracterize these parameters, because first those
are only measured in a very local area, which may not have a global meaning, and secondly
the way of building and the evolution in time of the road are not taken into account. The
present paper deals with numerical simulations based on Simulated Annealing in order to set
up a method for road acoustical parameters identification. The main idea is to consider any
pavement, to make in situ acoustic impedance measurements and from these experimental
data, to retrieve the intrinsic parameters of the road.

1 . INTRODUCTION

The acoustic behaviour of road surfaces depends on intrinsic parameters like porosity or
tortuosity. The access to these parameters is a key to understand the progressive degrada-
tion of the acoustic performance of road surfaces, and drainage pavements in particular.

Parameters identification is an aspect of the general inverse problem. It relies on a direct
resolution, a model, which constitutes the starting line of the problem. That is why the better
way the model describes the physical phenomenon, the more pertinent the identification is.

The predictive model here is fixed and is considered as a reference resolution of the direct
problem. The main interest of the approach is to use acoustical measurements in order to
access to the intrinsic parameters without destroying the structure. This non-destructive ap-
proach is even more interesting because laboratory tests on samples have no global meaning
and are most of the time difficult to prepare. A method based on in situ measurements is
of course closer to the behaviour of a "real" road. The approach is very similar to the work
about surface waves on pavement4 .
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This inverse problem approach on in situ absorption coefficient measurements of porous
road pavements has already been investigated1 . One of the conclusions of this previous
work is that using the impedance Z instead of the absorption coefficient would ease the res-
olution of the inverse problem because Z contains much more information. The purpose of
this paper is to study numerically a Z-based inversion.

The present inversion problem is non linear, the space to explore is of dimension higher
than 3, and the cost function is non convex. This is why this inversion is not trivial and a
numerical method has been used. This is method is the Simulated Annealing (SA), present-
ing the inversion like a optimization problem. The target value which is considered is not
the absorption coefficient, but the impedance given by the model. This choice is explained
hereafter.

The paper is organized as follows. First the impedance model of Hamet and Bérengier is
recalled. Then the specifically designed SA algorithm is exposed. The impedance model is
used with the numerical method. Lastly, results are presented and discussed.

2 . IMPEDANCE MODEL

A.Description of the model
This identification work relies on the model of Hamet and Berengier2 . This model is a

fusion from two models, one to take into account viscous phenomena and a second to take
into account thermal phenomena.
There are 4 parameters : the flow resistiviy σ, the tortuosity α∞, the porosity Ω and the thick-
ness d.
These parameters allow for characterizing the acoustical behaviour of porous asphalt.

Here are the formulas for this impedance model. fµ and fθ are homogeneous to frequen-
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The characteritistic Impedance Z∞ :
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The usual formula to compute the characteristic impedance Zc is :

Zc = Z∞cotanh(κd) (3)



B.Analytical expression
The impedance can be expressed analytically as a complex quantity ReZc + iImZc :

Zc = Z∞

(
sinh (2 d Imκ)− i sin (2 dReκ)
cosh (2 d Imκ)− cos (2 dReκ)

)
(4)

ReZc =
ReZ∞ sinh (2 d Imκ) + ImZ∞ sin (2 dReκ)

cosh (2 d Imκ)− cos (2 dReκ)
(5)

ImZc =
ImZ∞ sinh (2 d Imκ)− ReZ∞ sin (2 dReκ)

cosh (2 d Imκ)− cos (2 dReκ)
(6)

The new aspect here is only the presentation of the model under an analytical form for
the formula of impedance Zc.

3 . SIMULATED ANNEALING

A.Principle of the method
The Simulated Annealing method is a combination between a random walk in a space

and the Metropolis criterion. The name annealing comes from crystalline solids physics5 .
The idea is to start from a initial temperature T0 with the same unit as the objective function
and a cooling parameter a (about 0.9). Each iteration j involves a random choice of each
parameter. Figure 1 gives the flow chart of the algorithm.

The Metropolis rule consists in the fact that the new set of parameters may be accepted

if r < exp
(
−
CS(pj)− CS(pi)

T

)
where r is a random number from 0 to 1.

B.The key choices
As all numerical methods, SA is effective under some conditions.

The first thing is to define how to generate a "neighbour". In a multi-dimensional space, the
term of "neighbour" depends strongly on the physical meaning of the parameters.
The second important condition is the temperature law. If the temperature T decreases too
fast, the method is said to "freeze", that is the optimal solution is not reached, but the gener-
ated neighbours are too close to improve significantly the objective function. This happens
when SA gets "stuck" in a local minimum. The choice of the temperature law is not easy
because it is strongly relying on the way of choosing neighbours. In the present paper, the
temperature law is the same for all parameters, but it is possible to make a specific law for
each parameter.
A common cooling schedule is the exponential, this is the temperature law that is used in the
present paper.



Figure 1: Description step by step of the principle of Simulated Annealing method. CF stands
for Cost Function



4 . THE INVERSION PROBLEM

A.Generating neighbours
Generating neighbours in a space of dimension 4 for continous parameters needs some

abstraction. The fact is that this step is crucial for the efficiency of the method on the one
hand, and on the other hand the physics of parameters should be taken into account. This
last point is difficult and was not treated in the present paper.

The research of neighbours is done here through a perturbation way, that is for a current
point xi, a neighbour xi+1 is generated by :

xi+1 = xi +
(
1− e−T

)
xi η1

arctan(η2)
arctan(η1)

(7)

where η1 and η2 are random numbers in [−1, 1].

This approach differs from the Fast Simulated Annealing3 , but for our application FSA
generation of neighbours gives very often values corresponding to the minimum or the max-
imum values allowed for the parameters. This generating function is smoother at edges.
Therefore, the case of generation of extreme values seldom occurs.

B.Temperature law
The temperature law is the exponential classic one. It is important to note that the gen-

eration of neighbours has been also modified in its temperature dependance, in replacing T
by 1− e−T .
It is possible at this stage to change the temperature law, which can contribute to a better
exploration of the parameters space, but it can also leeds to a excessive number of compu-
tations.

C.Cost function
The cost function is computed from the analytical expressions fre and fim given by (5)

and (6). The frequency discretization has been fixed from 100 Hz to 4000 Hz with a step of
5 Hz. RealZc and ImZc are computed on this frequency scale.

In this numerical study, a set of realistic target values has been chosen : σtarget = 50901,
αtarget
∞ = 2.4, Ωtarget = 0.252 and dtarget = 0.12. Then RealZtarget

c and ImZtarget
c has been

computed.
The aim is to start from RealZtarget

c and ImZtarget
c on the frequency band and to retrieve the

target values σtarget, αtarget
∞ , Ωtarget and dtarget.

The chosen cost function is a quadratic error function at each frequency. The better the
solution, the lower the error. For numerical considerations and because of the large scale of



variation, this error has been put in a log function to avoid very big numbers.

RealZc = fre(σ, α∞,Ω, d) (8)
ImZc = fim(σ, α∞,Ω, d) (9)

Cost Function = 10 log
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D.Starting conditions
Each value lies in an interval. This interval comes from the physical sense of the param-

eter :

1 ≤ α∞ ≤ 10 (11)
0 ≤ Ω ≤ 0.5 (12)

10000 ≤ σ ≤ 70000 (13)
0.02 ≤ d ≤ 0.5 (14)

Then a starting value is necesseray for each parameter as described in table 1 :

α∞ Ω σ d

target values 2.4 0.252 50901. 0.12

starting values 1.2 0.4 40000 0.035

Table 1 : Starting values.

It can be noticed here that values have been selected quite "far" from the target values.

5 . RESULTS

A.Number of shots
The number of shots here is not fixed. What is fixed is the value of the cost function, that

is a minimum to reach. Table 2 is the result with a minimum for the cost function fixed to 20,
which has taken about 7000 shots. The temperature is increased regulary and the algorithm
is restarted from the last best solution.



α∞ Ω σ d

target values 2.4 0.252 50901. 0.12

SA values 2.3931158 0.2516366 50825.757 0.1201745

Table 2 : Results of the SA for about 7000 shots.

As it can be noticed, results are quite in good agreement with target values, except for the
flow resistivity. This is why a second simulation has been carried on with a lower condition on
the cost function. Results are presented in table 3. The number of shots has been multiplied
by 2 and the flow resitivity is still not the exact one. On the convergence point of view, the
method is quite slow. The difficulty is that it is not possible to know exactly the required
computation time.

α∞ Ω σ d

target values 2.4 0.252 50901. 0.12

SA values 2.4041784 0.2522196 50946.121 0.1198947

Table 3 : Results of the SA for about 14000 shots.

B.Graphical results
Figure 2(a) describes the behaviour of the cost function during the simulation with 14000

shots. It decreases much faster at the begining. On figure 2(b), there is a zoom in order to
illustrate the fact that the temperature is increased at each 100 shots in order to keep finding
better solutions.



Figure 2 : (a) Evolution of the Cost function related to the number of shots. (b) Illustration of
re-annealing by increasing temperature.

6 . CONCLUSION

The method has been shown to work on a simulated measurement data set. The consid-
eration of the impedance as a target value with the Simulated Annealing as an optimization
algorithm allows for finding the intrinsic road’s parameters.
Of course this is only a numerical method tested on simulated data. It has too be first tested
with noise on impedance values and then on real experimental data.

The numerical inversion used here is a general procedure than can be carried on with
other impedance models.

When using global optimization tools, it is difficult to know a priori what is the most ef-
ficient algorithm for a given inverse proble. From this application of SA, it can be seen that
a genetic algorithm could be a good replacement, because the generation of new solutions
can be designed to automatically respect to constraints on the definition intervals of each
parameter to be optimized.
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