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1 INTRODUCTION 

Predicting airborne sound transmission in buildings almost always requires consideration of the 
flanking paths. However, the most basic requirement by users of prediction models is a good 
estimate of the direct path for airborne sound transmission between two rooms separated by a solid 
homogeneous plate. The existence of a number of different theories and formulae to calculate 
resonant and non-resonant transmission can give the impression that this most basic of situations is 
not straightforward to model. In practice the choice of formulae is relatively straightforward if the 
required degree of accuracy is established beforehand. However, there are certain aspects that are 
difficult to predict accurately; the most notable of these is the dip in the vicinity of the critical 
frequency.  
 
This paper reviews the application of various theories to plates that are used to form building 
structures. The focus is on qualitative descriptions rather than the underlying formulae and 
derivations; these can be found in a recent book on sound insulation by Hopkins1. 
 
 
2 SOUND TRANSMISSION MODEL 

Calculation of the sound reduction index for a plate that separates two rooms can be carried out 
using well-established theory for diffuse sound and vibration fields without recourse to consideration 
of modal energy flow. However, the latter approach can be undertaken within the framework of 
Statistical Energy Analysis (SEA) and has certain advantages. The SEA framework simplifies 
consideration of the two sound transmission mechanisms; non-resonant and resonant transmission. 
The importance of this becomes apparent when starting to predict the combination of direct and 
flanking transmission. Flanking transmission between connected plates only concerns the resonant 
vibration; hence it is useful to have a framework that can isolate the different mechanisms. In 
addition, the prediction of direct and flanking sound transmission in buildings tends to be carried out 
nowadays using either first-order SEA path analysis (as used in EN 12354-12), or with a full SEA 
model.  
 
The SEA model is shown in Figure 1 and corresponds to the situation representing an idealized 
transmission suite. A sound power input Win(1) is applied to the source room, and power Wij is 
transmitted between subsystems i and j via the non-resonant path 1→3, and the resonant path 
1→2→3. The plate subsystem only supports bending modes of vibration. 
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Figure 1 SEA model for airborne sound transmission between two rooms across a plate 
 
 
3 NON-RESONANT TRANSMISSION 

Non-resonant transmission can be quantified for plates of finite and infinite extent. It is sometimes 
referred to as mass law transmission, or forced transmission. 
 
For finite plates, non-resonant transmission describes transmission due to bending modes that have 
their resonance frequencies outside the frequency band of interest (Sewell3). Individual modes with 
resonance frequencies below the critical frequency will have a higher radiation efficiency at 
frequencies above their resonance frequency, than actually at their resonance frequency. So when 
the frequency band of interest is below the critical frequency, radiation from modes with resonance 
frequencies within the band can be lower than radiation from modes with resonance frequencies 
outside the band that have been excited ‘off-resonance’. For the former modes, the modal response 
is under damping-control; for the latter modes, it is predominantly under mass-control. Non-
resonant transmission can therefore be considered as being unaffected by the plate damping. In 
contrast to infinite plate theory, finite plate theory considers the plate to have both mass and 
stiffness. Whilst the mass per unit area is still important in quantifying the non-resonant 
transmission, the role of bending modes means that it also depends on the plate dimensions and 
the critical frequency. For a finite plate, the non-resonant transmission coefficient below the critical 
frequency can be calculated according to Leppington4. 
 
For infinite plates, the theory is based upon a plate that acts as a limp mass. A minor advantage in 
using the approach for infinite plates compared to finite plates is that the equation is slightly more 
compact. Infinite plate theory requires integration of the component of the incident plane wave 
intensity that is normal to the surface. For a plate exposed to a diffuse field the angles of incidence 
considered in this integration are assumed to lie between 0 and 90°. However, diffuse fields are an 
ideal that are not realized in typical rooms over the entire building acoustics frequency range. There 
are also situations where the plate is positioned within a niche such that it is partly shielded from 
angles of incidence near 90°. To account for these issues, an empirical adjustment is used where 
the angle 90° in the integration is replaced by 75°, 78°, or 80°; although 78° is most common. This 
range of angles is referred to as field incidence. Its name unfortunately suggests that this 
assumption is always valid for field measurements; which it is not. The assumption simply gives 

Page 84



Proceedings of the Institute of Acoustics 
 
 

Vol. 30. Pt.2. 2008 

 

fortuitous agreement with measurements for particular plate sizes with particular critical 
frequencies, usually with particular mounting conditions in a niche and usually where non-resonant 
transmission dominates in the low and mid-frequency ranges and the sound field in the rooms is far 
from being diffuse. Whilst the infinite plate formulae for diffuse and field incidence are very useful for 
quick calculations and illustrative purposes, they do not describe all the features of non-resonant 
transmission that relate to finite size plates. 
 
Unlike finite plate theory, non-resonant transmission across infinite plates is defined above the 
critical frequency. This implies that if the plate damping is sufficiently high such that resonant 
transmission is negligible at frequencies well-above the critical frequency, then non-resonant 
transmission will dominate at these high frequencies. It is unusual to find homogeneous plates in 
buildings that are this highly damped in the building acoustics frequency range, and using infinite 
plate theory for non-resonant transmission above the critical frequency is not usually appropriate. 
 
Taking 6 mm glass as an example, the non-resonant sound reduction index for finite plates can be 
compared with infinite plates in Figure 2. For a finite glass plate, a reasonable size to consider is 1.5 
x 1.25 m, but to illustrate the effect of plate size, rather unrealistic dimensions of 4 x 2.5 m are also 
shown. For the finite plates, the smaller plate has higher values than the larger plate, and both finite 
plates have significantly higher values than an infinite plate assuming diffuse incidence. As the 
frequency approaches the critical frequency, the non-resonant sound reduction index for the finite 
plates starts to decrease. Above the critical frequency, the non-resonant transmission coefficient is 
undefined for the finite plates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Non-resonant transmission across finite and infinite plates of 6 mm glass (s=15 kg/m2, 
cL=5200 m/s). 
 
4 RESONANT TRANSMISSION 

Resonant transmission occurs between the plate and source room, and the plate and receiving 
room. It describes the coupling between modal energy stored in these connected subsystems. 
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4.1 Critical frequency dip 

Standard thickness sheets of plasterboard, wood and metal tend to have a pronounced dip at the 
critical frequency. However, in the vicinity of the critical frequency it is notoriously difficult to 
accurately predict the radiation efficiency, even when the statistical mode count and modal overlap 
factor are high. This can partly be overcome by calculating lower and upper limits for the radiation 
efficiency (Method No.2 in Hopkins1). The upper limit corresponds to the standard equation for 
radiation efficiency. The lower limit is calculated by setting the radiation efficiency to unity in and 
above the lowest frequency band where the calculated value exceeds unity. Measured data usually 
lie within the shaded area between the two limits. An example is shown for 12.5 mm plasterboard in 
Figure 3 where the critical frequency is 3483 Hz. 

For walls and floors made from bricks, masonry or concrete the dip near the critical frequency is 
often difficult to discern and is rarely as pronounced as with standard thicknesses of plasterboard, 
wood and metal. By using only the lower limit for the radiation efficiency described above (see 
Method No.3 in Hopkins1) it is possible to get reasonable estimates of the sound reduction index in 
the vicinity of the critical frequency as shown by the example in Figure 4. Note that when the plate 
mode count is less than three in frequency bands below the critical frequency, a more accurate but 
time consuming approach is to calculate the radiation efficiency using regression analysis from the 
radiation efficiency of individual modes (Method No.4 in Hopkins1).

Figure 3 Measured and predicted airborne sound insulation of 12.5 mm plasterboard. Upper x-axis 
labels show the predicted statistical mode count (Ns) and modal overlap factor (M) for the plate, and 
the geometric mean of the modal overlap factors for the plate and room (Mav).  

Plate properties: Lx=3.53 m, Ly=2.63 m, h=0.0125 m, s=10.8 kg/m2, cL=1490 m/s, =0.3, 
int=0.0141. 
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Figure 4 Measured and predicted airborne sound insulation of a 115 mm masonry wall (solid 
aircrete blocks) with a 13 mm lightweight plaster finish (one side). Upper x-axis labels show the 
predicted statistical mode count (Ns) and modal overlap factor (M) for the plate, and the geometric 
mean of the modal overlap factors for the plate and room (Mav). 
 
Plate properties: Lx=3.53 m, Ly =2.63 m, h=0.128 m, s=71 kg/m2, cL=1820 m/s, =0.2, measured 
total loss factor. The plateau is calculated using material properties corresponding to the plate 
thickness: cL=1920 m/s and an internal loss factor int=0.0125. 
 
 
4.2 Low mode counts and low modal overlap 

Over the building acoustics frequency range we find that walls, floors, and glazing can support 
vastly different numbers of bending modes in third-octave frequency bands. The absence of diffuse 
vibration fields on plates in buildings is sometimes quoted, albeit incorrectly, as the only reason why 
it is difficult to gain accurate predictions of resonant transmission for airborne sound. It is also useful 
to consider the degree of overlap in the modal response that is described by the modal overlap 
factor. Referring back to Figure 3, the upper x axis labels show that even when there is an 
abundance of modes and there are high modal overlap factors it can be difficult to accurately 
predict the sound insulation in the vicinity of the critical frequency. This difficulty in predicting sound 
transmission near the critical frequency is partly because the theory for radiation efficiencies does 
not adequately describe the phenomenon (particularly with wide frequency bands), and partly 
because of niche effects. 
 
The example in Figure 5 shows that for a thick masonry wall with fractional mode counts and modal 
overlap factors less than unity it is still possible to get reasonable estimates for the sound reduction 
index over the building acoustics frequency range. The modal overlap factor for the plate is very low 
compared to each room to which it is coupled. Hence conditions relating to the adequacy of the 
theory can be linked to the geometric average of the modal overlap factors for the room (source or 
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receiving) and the plate, Mav, These values are greater than unity over a larger part of the frequency 
range. Reasonable estimates for the sound insulation can usually be found when Ns ≥ 1 for the 
plate system, and Mav ≥ 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Measured and predicted airborne sound insulation of a 215 mm masonry wall (solid dense 
aggregate blocks) with a 13 mm lightweight plaster finish (each side). Upper x-axis labels show the 
predicted statistical mode count (Ns) and modal overlap factor (M) for the plate, and the geometric 
mean of the modal overlap factors for the plate and room (Mav).  
 

Plate properties: Lx=3.53 m, Ly =2.63 m, h=0.215 m, s=430 kg/m2, cL=3200 m/s, =0.2, measured 
total loss factor. The plateau is calculated using material properties corresponding to the plate 
thickness: cL=4000 m/s and an internal loss factor int=0.01. 
 
 
 
4.3 Transition from thin to thick plate theory 

For most solid masonry/concrete walls, the thin plate frequency limit for bending waves, fB(thin), falls 
in the mid or high-frequency range. Whilst it is referred to as a ‘limit’, thin plate theory does not 
instantly break down at a specific frequency. For direct airborne sound insulation across a solid 
homogeneous plate, thin plate theory can often be used up to a frequency of 4fB(thin) (Ljunggren5). It 
is possible to treat 4fB(thin) as a limit whilst acknowledging that it is not quite so clear-cut in practice. 
Errors from using thin plate theory in the range fB(thin)  f < 4fB(thin) are usually less than 3 dB. This is 
often tolerable due to the uncertainty in predicting the total loss factor. Above 4fB(thin) the airborne 
sound insulation effectively stops increasing with frequency and reaches a plateau with dips due to 
thickness resonances across the plate. 
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5 CONCLUSIONS 

For homogeneous plates found in buildings, the examples in this paper indicate the close 
agreement that can be achieved between theory and measurement for airborne sound insulation. 
The measurements were taken under controlled laboratory conditions hence these represent ‘best 
case’ scenarios because additional measurements were needed to determine the material 
properties and damping of the plates. These examples show that difficulties in accurately predicting 
the airborne sound insulation are not restricted to frequency bands where the plates have a dearth 
of bending modes. In fact it is found that reasonable estimates can usually be found when the 
statistical mode count Ns ≥ 1 for the plate system, and the geometric average of the modal overlap 
factors for the room (source or receiving) and the plate Mav ≥ 1. Strategies were proposed to deal 
with difficulties in predicting sound transmission in the vicinity of the critical frequency. These were 
shown to be effective for masonry/concrete plates where the critical frequency typically occurs in 
frequency bands with low mode counts, and plasterboard, wood or metal plates where the critical 
frequency typically occurs in bands with high mode counts. 
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