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I. INTRODUCTION

This paper is an extension of previous work on active sound absorption by Mazzola [1]. Here we
describe how 'l‘hevcnin's theorem [2] is used to dalgn a feedback strategy for extracting a
maximum amount of power from a point on a vibrating structure. We then show that a
modification of this strategy can be used to add or substract virtual mass or stiffness and
change the resonant frequency and the Qof a mode. Also the damping of the mode may be set
arbitrarily. In general we show that the feedback strategy implements an arbitrary linear
operator for controlling the dynamics of a vibrating system.

For the most part the discussion will consentiate on the analysis and design of the feedback
strategy to control a simple harmonic oscillator. and we will give some experimental results to
support the work.

2. ACTIVE CONTROL OF A SIMPLE HARMONIC OSCILLATOR

2.1 Mechanical System

A simple harmonic oscillator with an active control force F5“) is shown in Fig. l. 50:) is some

 

Figure 1. Harmonic oscillator with an active conuol force.

arbitrary external driving force. the parameters; M, k, and R represent the mass, stiffness, and
mechanical resistance respectively. We develop a control suategy that generates a control force
ECU) equivalent to an arbitrary change of any system parameter. For instance we can add or
subtract virtual mass or stiffness to the system and threreby change the resonant frequency
and Q, in a predictable way. Or we could specify that the active force be such that. for a
sinusoidal excitation, the time average power into the control force transducer be a maximum.
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in addition to the above control strategies, we could choose one to set the damping to some
arbitrary value.

The first control strategy we consider is one that causes maximum power to flow into the force
transducer in the sense defined above. We do this by removing the external force and estimating
the impedance that the active control force "see". This is the Thevenln impedance of the system.
it is well known that if the actual force is replaced by the complex conjugate of the Thevenin
impedance and the external force is sinusoidal then the power into the load will he a
maximum. We will show that there exists a feedback strategy that will adjust the force so that
the control force transducer will look like the complex conjugate of the Thevenln impedance and
consequently the power into the transducer will be a maximum.

2.1 Electrical Analog
The analysis is simplified if the electric analog of the mechanical system is used. See FigureZ.

 

Figure 2. Electric analog of the mechanical system.

The voltages ¢c(l)and ¢¢(l) are analogous to the forces 12(1) and FA!) respectively. The

inductance L, capacitance C, and the resistance R are analogous to the mass, compliance, and
mechanical resistance respectively.

The Thevenln impedance is found as follows: short out :30) , remove ecu) and measure the

impedance at the terminals to which 25(1) was previously connected. By this process the

Thevenin impedance 21 (im) is found to be

Z](iw) =iw +l/iwC+R (l)

where m is the angular frequency. Having done this we replace the control voltage 6:0) by the

0

complex conjugate 210w) of the 'i‘hevenin impedance then the external voltage source ecu)now

"sees" a pure resistance

2 - 2R (2)
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it is well known that In this case and for a sinusoidal excitation the power into the load z;(ia:)

ls a maximum. Also we see that attaching 7,; (im) at the said location has the effect of cancelling
both reactances in the system. The resultant system is completely "dead". if the voltage where
shut off abruptly the current would stop Immediately. Correspondingly in the mechanical
system if the force is removed abruptly the velocity would go to zero immediately.

2.2 Control Law
For the system shown in Figure 2 the equation of motion, in the frequency domain, is

(in) +1/iwC +R)I(iw)=ee(iw) —ec(iw) (3)

if in this system the control source voltage ecuw) ls removed and 2,; (1'01) is put in its place, see
Figure 3,

 

Figure 3. 5:011!) source replaced by 7,; (im)

we get for the voltage drop across 2,; (im)

ec(ia)) = zfawww)
0r

ec(iw) =(—iwl —1/iwC + R)I(ia)) (4,

We have used the same symbol for the voltage drop across #001) and the voltage of the
controlled voltage source. We can do this because we have not specified the control voltage
source in the first place. Equation (4) now specifies the control voltage source as being

equivalent to the voltage drop across z;(iw). Substituting (4) into (3) gives the equation of
motion for the modified system,
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2Rl(iw) a seal») (5)

The motion (current) of the modified system is controlled by the damplng only, there are no
reactances and the power into the load is a maximum

In (4) we have already noted that «C(im) is the voltage drop across L;(im) when the current

through it is l(iw) . If instead of Installing the Z;(im) as described above we simply left the
control voltage source in its place but adjusted Its voltage according to (4) we would get the
same results, that is we would have created a situation in which maximum power would flow
into the control voltage transducer. Looking at the problem in this way we recognlze that (4) is a

C
control law. We can think of gum) as the linear operator that maps the current - which is
measurable - into a control voltage in such a way that the power into the control voltage
transducer is a maximum.

It is an easy matter to design a feedback strategy to implement the control law.

3t CONTROLNM

3.1 Background
The essential idea underlying control system theory Is the differential operator shown In
Figure 4. X(im) is the system input and Him) is the output. The objective of the control system

X(ia)) + 501») X(iw)

  

Him)

Figure 4. Differential operator. Figure 5. Control system in canonical form.

is to force Him) to track x(im) . The better the tracking the smaller the error :(im). A control
system in canonical form ls shown in Figure 5. The corresponding input output rau'o ls glven as
follows

You» , Gum)
Xizwi l 4- 231105 (6)
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I where C(iw) is the loop gain. It is the nature of the control system that as the loop gain is
Increased one of two things will happen; either the error «(it)» will approach zero and the output

will follow the Input eitactiy. or at least one of the zero's of I + Gum) will move onto the right
hand side of the complex plane and the system will become unstable. In this discussion we
assume that the system is always stable.

3.2 Control System for the Harmonic Oscillator
We now set up the control system for the harmonic oscillator. Figure 6 shows the electric analog

 

Figure 6. Control system attached to the electric analog system.

system. 'i1Ie control voltage source «C(iw) has been replaced by control system as shown. Once

the cone-oi system is implemented and the gain increased indefinitely the output scum) track '

Z;(im)l(iw) and maximum power will flow into the control system. This Is demonsmted by

showing that when K -e an the control law is satisfied. The transfer function connecting @0113)

and 1(im) - these are the output and input of the control system - is

ec(t'aJ) =—Z.Ll—K——K(ifflaw) (7)

Kli_t.nwec(iw) =z;(iw)1(m) ‘3’

From (8) it is apparent that the control system shown In Figure 6 does indeed Implement the
control law.

3.3 Beyond the Maximum Absorption Control Strategy
The control law which is implemented by the control system in Figure 6 maps the current into
the control voltage in the following way

scam) = z;(iw)1(iw) (4)
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The result is that the control system behaves as a virtual power sink and absorbs a maximum of

power from the primary system. This is a direct mult of using 2:01») as the linear operator in

the control system. We are free however to change the linear operator at will and get any one of a

number of control strategies. in general the control law can be written as follows

scam) = L(iw)1(iw) (9) ‘

where L(im) is some arbitrary linear operator, and would replace z;(im) in Figure 6. For

instance if Lam) -R then the control system is a virtual resistor and extracts power from the

primary system in the same way that a resistor would.. On the other hand if L(iw) aimL then the

control system is a virtual inductor and will reduce the resonance frequency of the primary

system. These are just two examples of a large variety of linear operators that may be used in

the conuoi system to place some arbitrary virtual load on the primary system.

In the next section we give some results achieved with a mechanical oscillator using the control

strategies discussed above.

4. EXPERIMENT

5.1 Background and Experimental Set Up

A schematic of the experiment is shown in Figure 7. It consists of a mass-spring-dashpot
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Figure 7. Harmonic oscillator with active control.

 

oscillator and an active control system of the type described above. All of the above analysis

applies to this system ii we replace the electrical system parameters by their mechanical

analogs, and the voltage and current by force and velocity. The parameters defining the system

are as follows
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M u 4.57 kgm k - 88.4 newt/m R = 11.9 kgm/scc

The resonant frequency is 0.7 Hz and the Q15 1.75. The mass rides on a track, and the control
and external forces are provided by two motors attached to the mass and driving a stationary
rack through a pinion.

The linear operator - see Figure 7 - is

L(iw)=—iaJA—Bliw +C (10)

in this experiment the parameters A, B. and C take on only positive values. With this operator
we can add to the primary system negative vinuai mass and or stiffness to some desired level by
adjusting the magnitude of A and B respecriveiy. in addition we can add virtual damping by
adjusting C.

5.2 Experimental Results
The hardware was constructed to implement the control system shown in Figure 7 and an
experiment was performed on me hannonlc oscillator described above. The results are shown in
Figure 8. The curve B is the response of the oscillator to the external forcewith no active
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Figure 8. Response of the oscillator with and without active control.

control (L(iw) -0). The solid line is the estimated response and the 0's are the measured
responses. Curve A is the response with the linear operator set to add negative virtual stiffness
equal to approximately to one-half of the real sdl‘l’ness. in this case L(iw)--44.2]iw. The
solid is the estimated response and the x's are the measured responses.
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