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1. INTRODUCTION

This paper is an extension of previous work on aclive sound absorption by Mazzola [1]. Here we
describe how Thevenin's theorem [2] is used to design a feedback strategy for extracting a
maximum amount of power from a polat on a vibrating structure. We then show that a
modification of this strategy can be used to add or substract virtual mass or stiffpess and
change the resonant frequency and the Q of a mode. Also the damping ol the mode may be set
arbitrarily. In general we show that the feedback strategy implements an arbitrary linear
operator for controlling the dynamics of a vibrating system.

For the most part the discussion will consentrate on the analysis and deslgn of the feedback
strategy to control a simple harmonic oscillator, and we will give some experimental results to
support the work.

2. ACTIVE CONTROL OF A SIMPLE HARMONIC OSCILLATOR

2.1 Mechanical System
A simple harmonic oscillator with an active conuol force £ is shown in Fig. 1. £ (9 is some

Figure 1. Harmonic escillator with an active control force.

arbitrary external driving force, the parameters; M, k, and R represent the mass, stiffness, and
mechanical resistance respectively. We develop a control strategy that generates a control force

£ (1) equivalent to an arbitrary change of any system parameter. For instance we can add or

subtract virtual mass or stiffness to the system and threreby change the resonant frequency
and Q in a predictable way. Or we could specify that the active force be such that, for a
sinusoidal excitation, the time average power into the control force transducer be a maximum.
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In addition to the above control strategies, we could choose one to set the damplng to some
arbitrary value,

The first control strategy we consider Is one that causes maximum power 1o Mow into the force
transducer in the sense deflned above. We do this by removing the external force and estimating
the impedance that the active control force "see”. This is the Thevenin impedance of the system.
It is well known that if the actual force is replaced by the complex conjugate of the Thevenin
impedance and the external force is sinusoidal then the power into the load will be a
maximum. We will show that there exists a feedback strategy that will adjust the force so that
the control force transducer will look like the complex conjugate of the Theventn impedance and
consequently the power into the ransducet will be 2 maximum.

2.1 Electrical Analog
The analysis is simplified if the eclectric analog of the mechanical system is used. See Figure2,
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Figure 2. Electric analog of the mechanical system.

The valtages e-(f}and & (# are analogous to the forces F.() and F () respectively. The

inductance L, capacitance C, and the resistance R are analogous to the mass, compliance, and
mechanical resistance respectdvely.
The Thevenin impedance Is found as follows; short out e (), remove e.(f) and measure the

impedance at the terminals to which e. () was previously connected. By this pracess the
Thevenin impedance Z7 ({w) is found to be

Zr(iw)=iw + 1/ iwC + R )

where @ is the angular frequency. Having done this we replace the control voltage ¢. () by the

»
complex conjugate Zg (iw) of the Thevenin impedance then the external voltage source eg (¢) now
"sees” a pure resistance

Z=2R (4]
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It is well known that In this case and for a sinusoldal excitation the power into the load Z;(im)

Is a maximum. Also we see that attaching Z; (iw) at the said location has the effect of cancelling

both reactances in the system. The resultant system Is campletely "dead". If the voltage where
shut off abruptly the current would stop immediately. Correspondingly in the mechanical
system if the force is removed abruptly the velocity would g0 to zero immediately.

2.2 Control Law
For the system shown in Figure 2 the equation of motion, in the frequency domain, is

(iw +1/iwC + R)I(iw) = ee(iw) — ecliw) {3)

If in this system the control source voltage e (éw) is removed and Z; (few) is put in its place, sce
Figure 3,

eliw

Figure 3. ez (iw) source replaced by # (e

we get for the voltage drop across Z; (iw)

ec(iw) = Z (o)l (i)

or

We have used the same symbol for the voltage drop across Z;—(iw) and the voltage of the

controlled voltage source. We can do this because we have not specified the control voltage
source in the first place. Equation {4) now specifies the control voltage source as being

equivalent o the voltage drop across Z;(iw) . Substituting (4) Into (3} gives the equation of
motion for the modified system,
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2RI(iw) = ep(iw) 5

The motion (current) of the modified system is controlled by the damping only, there are no
reactances and the power intm the load Is a maximum

In (4} we have already noted that e (iw) is the voltage drop across Z;(iw) when the current

through it is J¢w). If instead of installing the Z;(iw) as described above we simply left the
control voltage source in its place but adjusted its voltage according to (4} we would get the
same results, that is we would have created a situadon in which maximum power would flow
into the control voltage transducer. Looking at the problem in this way we recognize that (4) is a
control_[aw. We can think, of Z-;(:‘w) as the linear operator that maps the current - which is

measurable - into a control voltage in such a way that the power into the control voltage
transducer is a maximum.

It is an easy matter o design a feedback strategy to implement the control law.

3. CONTROL SYSTEM

3.1 Background )
The essential idea underlying control system theory is the differential operator shown in
Figure 4. X(iw) is the system input and ¥ (iw) Is the output, The objective of the control system

i + efi i + 1
X(fa)) {faw) X(Em) Glim) Y(iw)
Y{iw)
Figure 4, Differential operator. Figure 5. Control system in canonical form.

is to force Y (fw) to track X(fm). The better the tracking the smaller the error s{iw). A control

system in canonical form is shown in Figure 5. The corresponding input output ratio is given as
follows

Hio) | _Glio)

iw) 1+G(iw) (6
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" where Gliw) is the loop gain. It is the nature of the control system that as the loop gain is
increased one of two things will happen; either the error e(in) will approach zero and the output
will follow the input exactly, or at least one of the zero's of 1+ G{iw) will move onte the right

hand side of the complex plane and the system will become unstable. In this discussion we
assume that the system is always stable. .

3.2 Conurol System for the Harmonic Oscillator
We now set up the control system for the harmonic oscillator. Figure 6 shows the electric analog

L Zz (i) K /rrnl_(
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Figure 6. Control system attached to the electric analog system.

system. The control voltage source ¢ (iw) has been replaced by control system as shown. Once
the control systemt is implemented and the gain increased Indefinitely the output e (iw) track ~

z,;(:'m)l(icu) and maximum power will llow into the control system. This is demonstrated by

showing that when X — « the contol law is satlsfied. The transfer function connecting e (iw)
and /(iw) - these are the gutput and input of the control system - is

eclin) = K (if)l(iw) U}

. Y < 7% (0 . (8)
Kll_:{lwec(zm) Zo(iw ) (iw)

From (8) it is apparent that the control system shown in Figure 6 does indeed implement the
control law.
3.3 Beyond the Maximum Absorption Control Srategy

The conto! law which is implemented by the control system in Figure 6 maps the current into
the control voltage in the following way

ecli) = Zy(iw)l (w) @
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The result is that the contol system behaves as a virtual power sink and absorbs a maximum of

power from the primary system. This is a direct result of using Z; (iw) as the linear operator in

the control system. We are free however to change the linear operator at will and get any one ofa
number of control strategies. In general the congol law can be written as follows

eciw) = L{iw)iw) (9

where L{w) is some arbitrary linear operator, and would replace Z;(iw) in Figure 6. For

instance If L{iw) = & then the contro! system is a virtual resistor and extracts power from the
primary system in the same way thata resistor would.. On the other hand if L{iw) =iwl then the
control system is a virtual inductor and will reduce the resonance frequency of the primary
system. These are just two examptes of a large variety of linear operators that may be used in
the conwrol system to place some arbitrary virtual load on the primary system.

In the next section we give some results achieved with a mechanical oscillator using the control
strategies discussed above.

4. EXPERIMENT

5.1 Background and Experimental Set Up
A schematic of the experiment is shown in Figure 7. It consists of a mass-spring-dashpot
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Figure 7. Harmonic oscillator with active control.
oscillater and an active control system of the type described above. All of the above analysis
applies to this system if we replace the electrical system parameters by their mechanical

analogs, and the voltage and current by force and velocity. The parameters defining the system
are as follows
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M = 4.57 kgm k= 88.4 newt/m R=11.9 kgm/sec

The resonant frequency is 0.7 Hz and the Q is 1.75. The mass rides on a track, and the control
and external forces are provided by two motors attached to the mass and driving a staticnary
rack through a pinion.

The linear operator - see Figure 7 - is
L(I.GJ)=—£'(L!A—BHCD +C (10)

In this expetiment the parameters A, B, and C take on only positive values. With this operator
we can add to the primary system negative virtual mass and or stiffness to some desired leve] by
adjusting the magnitude of A and B respectively. In addidon we can add virtual damping by
adjusting C.

5.2 Experimental Results

The hardware was constructed to implement the control system shown in Figure 7 and an
experiment was performed on the harmonic osclllator described above, The results are shown in
Figure 8. The curve B is the response of the oscillator to the external force with no actve
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Figure 8. Response of the oscillator with and without active control.

control (L(iw) =0). The solid line is the estimated response and the 0's are the measured
responses. Curve A is the response with the linear operator set to add negative virtual stiffness
equal to approximately to one-half of the real sdffness. In this case L{iw)~= =442 /itw. The
solid is the estimajted response and the x's are the measured responses.
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