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ABSTRACT

The classiml analysis of a vibrating string assumes that the string is perfealy flexible. This implies that the

partials will he harmonimlly related In practice. however. the finite stiffness of real strings means that the
partials became sharpa‘ with lntxeasing frequency. This paper examines an extrune use of frequency snatching

in which the second partial falls at three times the hindamental frequency. This vibrating syslm am he thought

of as intumediate between e suing and a bar. and might be expected to have anintermediate timbre. This can be

made using a “fat suing". mud: thidrn- and shorter than that for a near-harmonic string. 1 start by giving a

theoretiml ovuview of frequency stretching and inharmonicity, and derive the dimsions required for fat

strings. i then give synthetic examples of the timbres available. Finally I discuss practical considerations in

designing insuuments using lat strings. and present prototype instruments using these principles.

I, INTRODUCTION

The displaeanent y of a string at position x is given by equation

' (1). where T is the tension, Y is the Young‘s modulus. S is the

cross-sectional area. K is the radius of gyration, and p is the mass
per unit lmgth.[l] The amplitude of vibration is assumed to be

small with respect to the length of the string, and friction is

assumed to be negligible The frequencies depend on the end

conditions. For a string pinned at both ends. y=dzyldx1=0 at

x=1VxL where L is the length of the suing. The modal

frequencies are then given by equations (2)44), Note that the

fundamental frequenq is not to but t,=rN(t+B). The motion of a
suing clamped at both ends is more complex; the modal
frequencies are given by equation (2) but with in multiplied by a

constant, Experiments by Shnnklend indicate that the behaviour
of typical piano bridges lies between the pinned and clamped
ases.[7] For simplicity I shall assume in this paper that the
equations for the pinned condition are valid,

The dimensionless factor B determines the inharmonidty. The

inharmonicity is lowest for long thin low-modulus wires under

high tension, and highest [or short l’at high-modulus wires under
low tension. Themes! common example of this is in the lowest

strings of an upright piano, where the length is limited and thus

the strings must be very thick. The largest inhannnnicity is
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General equation ofmotionfor strings.
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actually found in the highest strings. but the higher harmonics lie hcynnd lhc audible rangelti]
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For solid round strings of density D, S=1u". K=rl2. and p=yDS, giving equations (5) and (6). These relatims do
not apply to wound strings. which have lower inharmonicity than solid strings.[2]

The inharmon'tcity is genually low. in which use equation (2) may he simplified to t.=nt.(l+i61in’). Sdmdt's
investigationsm of Fl on an upright piano give B=6.lx10". Fletcher's mmurantsflzl on an upright give
5.3x10‘ for A0, 4xl0‘ for the lowest solid string and 0.012 for the highest.

There are three tediniques for examining simple vibrating systems such as this, The first is to mathematically
analyse the governing equations. the second is to develop a computational physiul model of the systnnfl]. and
the third is to build and measure an actual model.

2. THEORY OF FAT STRINGS

This work relies on an extretne interpretation of the equation for frequey stretming. For suflita'ently stiff
strings. the second partial rashes three times the fundamental frequency Solving equation (2) for f,/t'I=3 gives
B=5l1=0,7l4. The second partial still corresponds to the string vibrating ‘in halves'. but is at three times the
frequency of the first Sud: a high value for B requires a string
much thickn- and shmer than normal. This is what I refer to as a B = % (7)
‘fat’ string. The third partial is inharmonic. with f,lf.=*139=6.25.         

  
  

   
  

r _ 2f SD
Thus. new timbre: am he gerated from fat strings, Sud: a F — n- ? (a)
string might have a timbre similar to both a bar and a string. 1 1
Whetha the two harmonic partials and the inharmonic partials T: 77Lth L2,: = 7" YL—zrr (9)
fuse sufficiently well to suggest a timbre remains to he detainined 3 _

"3' WWW“ 3"“mama“ Far mund solid fluted strings.     

   
To dew-mine the dimensions {or a given f.. Y, and D. we
suhstiune 52’], into (S) and (6). giving equation (8). There is a
dloiee of r and L. The tension is then given by equation (9); a
higha tension gives more efficient transmission of energy and
hence a louder sound.

r f—=1.628x10“. =—‘ 1
L“ f‘ 6142 (0)
“57544.152ff (it)
Steel v round solid inud nrbtgr.

Steel has a density D=7850 kg.tn" and a modulus typime Y=2xl0” Pa. giving (l0) and (ll).[3] The examples
below mume the use ofsteel.

     
      

The relationship between the parameters required for fat strings is shown in Figure I. This shows lines of
constant tension and constant frequency. The horizontal axis is length and the vertital is radius. and both are
logarithmic»
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Figure I - Frequency and tension affiu .rrnl string: rmu: strung dimem-ian: in nu'llbnms'.

3r COMPLTER SIMULATION

To evaluate the timlnl quality. [01:5 were synthesised using the above frequency relations. 'l‘hme (an be hard
via the world-wide web. Audio example 1 uses the first three partials. multiplied by the envelope e“‘-e"°'. ln
audio example 2. this is transposed and overlaid to form a tune.

Anna] piano strings have a mud: more complex envelope.[l] There are many irregularities in the velwes of
each partial. and for notes up to ms (622 Hz) the decay has two distinct slopes. Martin mlmlates the oval]
initial slopes as 5.5 dB]: at F1, 15 dB/s at PS, 8.6 dB/s at F5. and 80 dlils at F715] The higha partials deny
fasten

4. EXPERIMENTAL INSTRUMENTS

In order to test the basic prinu‘plcs, n and: monochord was
constructed. It was estimated that standard instrument
suing; would only readt the required degree of
inharmonicity by being nnnweptably short. instead, the
string was made Iran a wire coat hanger of an unknown
steel alloy. The radius was measured to be 1.38 mm. Using
this wire, we use equations (10) and (11) to give the
choices shown in table 1.

 

Table l — Fnl string: ruin; [J's-am- wire.
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The monochord mainland is
shown schematitu in Figure 2.
Trial and mor led to a string
Imgth (£7.60 min. The string is
anchored at one end and passes
ova- a basic wooden bridge;

tension is applied by suspending
weights from the d. Sound
picked up bya miu‘ophone close

gimme m“ “m8 “ n..,.2-n.mm

l

 

The fundamental frequency is determined by recording multiple plutis halfway along the string and finding the
spectnlpeaksflheseeondpanialisda'ivedinthesamewayexceptthestringispludtedataquarterolits '
length. Tnhle 2 shows the estimated and measured frequencies of the first two partials. .1

 

Table 2 — Estimated and wanted string pumleu'.

The suing has lower inharmnnicity than estimated and so B=’l7 is readied at a low: tension. This may derive
from a combination of expo-imam] mar and inaccurate constants. and warrants I'tn'thex analysis. The closest to
B=’l1 is achieved with a tension of 49 N, which gives f1/f,=2.97, Audio examples 3 and 4 are recordings of this
suing being plucked with aguitar plearum and a finger. A pleetrum is preferable as it gives more energy to the
second and highs partials. The partials decay rapidly. The first partial decays at approximately 13 am: and the
second decays at around 24 dB/s.

S. INSTRUME‘IT DESIGN

Having discussal the characteristics of fat strings, I now speculate on how instruments could he designed.
' Stringed instruments can usefully be clasilied as fixed-length or variable-length. Frxed-lutgth instrumth
include vials and the guitar family. In principle we could restring such an instrument with flat strings. However,
the highu strings become ridiculously thirk — the top E string on a guitar would be45 mm in diametn and would
require a tension of l.36 MN. Equations (8) and (9) show that the tension varies with the sixth power of the
length.
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It is clear that we must use a mud: smaller guitar. The

string spedfiuticns ftx a method-scale guitar with I

string length of 217 mm are shown in table 3.

  

IKE-Elfi-
“EEK!
“MEI-IB-
luau-m-

   
  
  

     

Thisgivestttotallmsimot‘ZBlZMThelmsimstill
m Wax m, high, 5mg; (mm. m mu IE-II'E-
unfnaihly wide) would be much loudu‘ than the low “In!
strings. This is an inevitable consequence of using a
fixed string length. Table 3 - String parameter: for ou-tltt'rd—rcale

guitar.

Onaharpcrapiano. thestringsatenot thesantelgth. ll'wedesigna

harp-like instrument. keeping a constant tension of 100 N. we get the
dimensions shown in table 4. Figure 3 illustrates these seven strings.

 

Table 4 — String dimenrt'mtrfor colorant-tension fat harp.

This is mudt more tutsonahle than using a constant length. Howevu.
now the lowest things are ratht: thick and the highst are rather short.

In practice some compromise between the constant-length and constant-
teusion strategies may he required. The difierent strategies used in
tables 1. 3, and 4 correspond to diffaent lines in figure 1.

Figure 3 _ rm harp.

 

6. CONCLUSIONS

I have shown that when a string is sufliciently stifl‘ its second partial readies a frequency three times that of the

first. Whaeas a standard string is long, narrow, flexible. and highly tensioned. and a bar is short. thick, rigid,
and untensioncd, the fat string lies hetneen the two in molt respect. This may have potential for new musical

instruments.

Future work should include more precise characterisation of the string behaviour, as the experimental and

theoretical values do not agree well. In particular, the design or the bridge and andtnn'ng needs to he examined,

as the difference between the clamped and pinned conditions increases with the inhartnonicity. In addition, the

very short decay time mans that attention must he paid to the resonator attached to the strings.
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APPB‘IDIX — AUDIO FXAMPLES

The audio examples canbe found on hnpzllcapelladuucukldoug/fatsu'ingsl.

l)

2)

3)

4)

174

Computu-gmuated In! timbre with three partials at 1. 3. and 6.25. Relative amplitudes are l. 0.5, and 0.05.
The common amplitude envelope for a 220-He lane is e‘l —e"°‘.

Melody "through the Keys" from Banolt‘s Milcmltosntos played using moshifled vusions of the above
timbre.

The monodtuxd (260xl.38 mm. 49 N) plucked with a pleurum. Then is a single note plucked at a halfof
the length. then another pludted at a quarter of the length. followed hy astain: of plucks from halfway
outwards.

The same monochmd plucked with a finget.
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