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ABSTRACT

The classical analysis of a vitrating string assumes that the string is perfectly flexible. This implies that the
partials will be harmonically related. In practice, bowever, the fAnite stiffness of real strings means that the
partials become sharper with increasing frequency. This paper examines an extreme case of frequency stretching
in which the second partial falls at three times the fundamental frequency. This vibrating system can be thought
of a5 intermediate between a string and a bar, and might be expected to bave an intermediate timbre. This can be
made using & “fat sting”, much thicker and shorter than that for a near-harmonic string. I start by giving a
theoretical overview of frequency stretching and inharmonicity, and derive the dimensions required for fat
strings. I then give synthetic examples of the timbres available. Finally 1 discuss practical considerations in
designing instruments asing fat strings, and present prototype instruments gsing these principles,

1. INTRODUCTION

The displacement y of a string at position x is given by equation N . 2
" (1), where T is the tension, Y is the Young's modulus, § is the |79 3 _yeprd Y _dy_o )
cross-sectional area, K is the radius of gyration, and p is the mass dx? dx* dr?
per unit length.[1] The amplitude of vibration is assumed to be | General equation of motion for strings.
small with respect to the length of the string, and friction is
assumed to be negligible. The frequencies depend on the end FFhz
conditions. Far agshn%ilng piined a1 both ends, y=dlyidx’=0 av | Fo =Hfo¥1+ Bn’
x=t¥iLl, where L is the length of the string. The modal |where
frequencies are then given by equations (2)-(4). Note that the niysk?
fundamental frequency is not f but f;=fo¥(1+8). The motion of a | 8 =——-7— , L)
string clamped at both ends is more complex; the modal
frequencies are given by equation (2) but with f, multiplied by a fo 1T

|

)]

constant. Bxperiments by Shankland indicate that the behaviour “2L\p
of typical piano bridges lies between the pinned and clamped i )
cases.[7) For simplicity [ shall assume in this paper that the LEived strings.
equations for the pinned condition are valid. .
nrr
The dimensionless factor B determines the inharmonicity. The =T’.“L1_ &)
inharmonicity is lowest for long thin low-modulus wires under
high tension, and highest for short fat high-modulus wires under 1 T

low tension. The.most commeon example of this is in the lowest fo= 210N D @

strings of an upright piano, where the lengih is limited and thus
the strings must be very thick. The largest inharmonicity is
actually found in the highest strings, bul the higher harmonics lic beyond the audible range.[6)

Round solid pinned strings.
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Far solid round strings of density D, S=m®, K=1/2, and p=DS, giving equations (5) and (6). These relations do
ot apply to wound strings, which have lower inharmonicity than solid strings.(2)

‘The inharmonicity is generally low, in which case equation (2) may be simplified to f,=nfo(144:Bn?). Schuck’s
investigations[6] of F1 on an upright piano give B=6,1x10". Fleicher's measurements[1,2} on an upright give
5.3x10°* for A0, 4x10™ for the lowest solid string and 0.012 for the highest.

Thete are three techniques for examining simple vibrating systems such as this, The Frst is to mathematically
analyse the governing equations, the second is to develop a computational physical model of the system(4), and
the third is to build and measure an actual model,

2. THEORY OF FAT STRINGS

This work relies on an extreme interpretation of the equation for frequency stretching. Por sufficiently stiff
strings, the second partial reaches three times the fundamental frequency, Solving equation {2) far f,/f,=3 gives
B="/;=0.714. The second partial still corresponds 10 the string vibrating ‘in halves', but is at three times the
frequency of the first. Such a high value for B requires a string
much thicker and sharter than vormal. This is what [ refer 0asa | B = 54 o
‘fat’ string. The third partial is inharmonic, with fy /f; =¥39=6.25.

r _2f |5D
"Thus, new timbres can be generated from fat strings. Such a | 72 g Y3y 8
string might have a timbre similar to both a bar and a string. " 3
Whether the two harmonic partials and the inharmonic partials T= 1z.Df, 22 = in YL'zr‘ ®)
fuse sufticiently well 1o suggest a timbre remains 1o be determined < I 20
by simulation and experimentation. Fat round solid pinned strings.
To determine the dimensions for a given f;, Y, and D, we
substitute B="f; into (5) and (6), giving equation (8). There isa | _F_ = 1628 %10~ f = £ 1 {10)
choice of r and L. The tension is then given by equation (9% 2 | 72 T 142
higher tension gives more efficient transmission of energy and 322,01
heihcc a londer sﬁund. : 5 T=57544.L°r° f, an

Steel fat round solid pinned sirings.
Steel has a density D=7850 kg.m" and a modulus wpically Y=2x10"" Pa, giving (10} and (11).[3] The examples
below assume the use of steel,

The relationship between the parameters required for fat strings is shown in Figure 1. This shows lines of
constant tension and constant frequency. The horizontal axis is length and the vertical is radius, and both are
logarithmic.
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Figure I — Frequency and tension of fa1 steel strings versus siring dimensions in millimetres,

3. COMPUTER SIMULATION

Tension (N}
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300
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To evaluate the timbral quality, tones were synthesised using the above frequency relations. These can be heard
via the world-wide web. Audio example 1 uses the first three partials, moltiplied by the envelepe >, In

audio example 2, this is transposed and overlaid to form a wne.

Actual piano strings have a much more complex envelope.[1] There are many irregularities in the envelapes of
each partial, and for notes up to D#5 (622 Hz) the decay has two distinet slopes, Martin calculates the overall
initial slopes as 5.5 dB/s at F1, 15 dBfs at F3, 8.6 dB/s at F5, and 80 dB/s at F7.[5] The higher partials decay

faster.

4. EXPERIMENTAL INSTRUMENTS

In order to test the basic principles, a aqude monochord was

constructed. It was estimated that standard insuvment

sirings would only reach the required degree of

inbarmonicity by being unacceptably shor. Instead, the

string was made from a wire cpat hanger of an unknown

steel alloy, The radius was measured to be 1,38 mm. Using

this wire, we use equations (10) and (11) to give the
choices shown in table 1.

F(Hz) 1 {mm) T (N)
55 393 S1
110 278 102
220 196 204
440 139 409
880 98 817
1760 69 1635
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The monochord constructed is ‘ |
shown schematically in Figure 2.
Trial and exvor led to a string
length of 260 mm. The string is
anchored at one end and passes
over a basic wooden bridge;
tension is applied by suspending
weights from the end. Sound
picked up by a microphone close
o the string is sampled using a

?

PC soundcard, Figure 2 = The monochord.

The fondamental frequency is determined by recording multiple plucks halfway along the string and finding the
spectral peaks. The second partial is derived in the same way except the string is plucked at a quarter of its
length. Table 2 shows the estimated and measured frequencies of the first two partials. .'

Tension f [ 1/, B
kg N estimatad meanaed estimated measured estimated measured estimated measured
2% 24.5 924 113.6 337 3674 164 3.23 3.391 1.156
3% 36.8 97.5 125.0 342 382.5 3.51 3.06 2.261 0.808
5 49.0 ig2 132.5 348 36839 3.40 297 1.696 0.672
6% 613 107 140.1 353 403.3 130 2.89 1.357 0.569
ik} 73.6 111 143.9 359 412.8 322 2.87 1.130 0.546
8% 85.8 116 147.7 364 420.4 115 285 0,968 0.523

Table 2 - Estimated and meagured string parameters.

The suring has lower inharmonicity than estimated and so B="); is reached at a lower tension. This may derive
from a zombination of experimental exror and inacturate constants, and warrants further analysis. The closest to
B=", is achieved with a tensien of 49 N, which gives f,/f;=2.97. Audio examples 3 and 4 are recordings of this
string being plucked with a guitar plectrum and a finger. A plectrum is preferable as it gives mare energy to the
second and higher partials. The partials decay rapidly. The first partial decays at approximately 13 dB/s and the
second decays at around 24 dB/s,

5. INSTRUMENT DESIGN

Having discussed the characteristics of fat strings, I now speculate on how instruments could be designed.

" Stringed instruments can usefully be classified as fixed-length or variable-length. Fixed-length instruments
include viols and the guitar family. In principle we could restring such an instrument with fat strings. However,
the higher strings become ridiculously thick — the top E string on a guitar would be 45 mm in diameter and would
require a tension of 1.36 MN. Equations (8} and (%) show that the ieasion varies with the sixth power of the
length.
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It is clear that we must use a mach smaller guitar. The
string specifications for a one-third-scale guitar with a note {@s) | cmm) | TQE) |
string length of 217 mm are shown in table 3 B4 329.6 2.521 1880

: B3 2639 1.893 592
This gives a total tensicn of 2812 N. The tension still G3 196.0 1.503 235
varies greally, the higher strings (which are still D3 146.8 1.126 74.0
unfeasibly wide) would be much louder than the lower A2 110.0 0.843 233
strings. This is an inevitable consequence of using a E2 824 0.632 134
fixed string length. Table 3 - String parameters for one-third-scale

guitar,

On a harp or a piano, the strings are not the same length. If we design a
harp-like instrument, keeping a constant tension of 100 N, we get the
dimensions shown in @ble 4. Figure 3 illustrates these seven strings.

note 1 (Hz) L (mm) 1 (mm)
AT 3520 214 043
Ab 1760 43.6 0.54
AS 880 69.1 0.69
Ad 440 169.8 0.86
Al 220 174.2 1.09
A2 110 276.6 1.37
Al 35 439.1 1.73
Table 4 — String dimensions for constant-tension fat harp.
This is much more reasonable than using a constant length. However,

now the lowest strings are rather thick and the highest are rather short.
In practice some compromise between the constant-length and consiant-
tension strategics may be required. The different strategies used in
tables 1, 3, and 4 correspond to different lines in Figure 1.

Figure 3 - Fat harp.

6. CONCLUSIONS

I have shown that when a string is sufficiently stiff its second partial reaches a frequency three times that of the
first. Whereas a standard string is long, narrow, flexible, and highly 1ensioned, and a bar is short, thick, rigid,
and untensioned, the fat siring lics between the two in each respect. This may have potential for new musical
instruments.

Future work should inclode more precise characterisation of the string behaviour, as the experimental and
theoretical values do not agree well. In particular, the design of the bridge and anchoring needs to be examined,
as the difference between the clamped and pinned conditions increases with the inharmonicity. In addition, the
very short decay time means that attention must be paid to the resonator attached to the strings.
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APPENDIX - AUDIC EXAMPLES

The audio examples can be found on hetp://capella dur.ac.uk/doug/faistrings/.

1}
2)

3

4)
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Computer-generated fat timbre with three partials at 1, 3, and 6.25. Relative amplitudes are 1, 0.5, and 0.05.
The common amplitude envelope for a 220-Hz tone is ¢ -e™*

Melody “Through the Keys” from Bartok's Mikrokosmos played vsing rate-shifted versions of the above
timbre. ‘

The monechord (260x1.38 mm, 49 N) plucked with & plectrum. There is a single note plucked at a half of
the length, then another plucked at a quarter of the length, followed by a series of plucks from halfway
outwards.

The same monochord pluecked with a finger,
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