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1 INTRODUCTION  

Increasingly, mine countermeasures (MCM) operations are conducted with an autonomous 
underwater vehicle (AUV) equipped with side-looking sonars. To enable adaptive surveys in which 
the AUV can automatically adjust to the environmental and tactical conditions observed in situ, it is 
helpful to have an accurate understanding of the seafloor characteristics. This is due to the fact that 
there exists a strong functional relationship between the characteristics of the seafloor and the 
relative difficulty of detecting objects (e.g., mines) in side-looking sonar imagery. (The generic 
umbrella term “characteristics” can refer to sediment composition, which affects target to seabed-
reverberation levels, as well as seafloor complexity, influenced by topography, rocks, and 
vegetation.) As a result, knowledge of the seafloor conditions can translate into more intelligent 
surveys, more accurate predictions of detection performance, and more effective automatic target 
recognition algorithms. In this work, we propose a new, fast approach to characterizing the seafloor 
in sonar imagery that is particularly well-suited for AUV-based MCM operations. 
 
Because seafloor variation often occurs on a very short length-scale (of meters), a global estimate 
of the environment (over a site spanning potentially many square kilometers) based on very few 
discrete measurement points (e.g., sediment grab samples) is typically too coarse to be of value. 
Instead, there is a need to accurately characterize the seafloor conditions locally, with through-the-
sensor sonar data being a logical means. 
 
A common approach to assessing an underwater environment is to perform (hard) segmentation of 
the seafloor into discrete classes (e.g., sand, mud, rock). Various supervised classification 
approaches (requiring labeled training data) have been used to achieve this, with methods 
employing sets of features based on fractal dimension

1
, gray-level co-occurrence matrices

2
, 

spectral energy
3
, wavelets

4
, or combinations thereof

5
. The major problem with these approaches is 

that the complete universe of seafloor classes must be known and enumerated a priori. Thus, there 
is a desire to instead characterize each point on the seafloor via a single continuous-valued feature, 
without having to resort to explicit class segmentation.  
 
Some of the earliest attempts to characterize seafloors in sonar imagery were based on trying to fit 
specific statistical models to the pixel distribution

6,7
. The learned model parameters (e.g., the shape 

parameter of a k-distribution) would then be used to implicitly characterize the seafloor. The main 
drawback to this approach is that there is no guarantee that the pixels actually follow the assumed 
distribution. Although the approach may work well on ideal, benign flat seabeds where the 
parameters are tightly correlated with the sediment (scatterer) size, it is unclear that more complex 
seafloors – e.g., covered in posidonia (a type of seagrass), characterized by sand ripples, or 
composed of a mixture of sediments – satisfy the implicit assumptions. 
 
More recently, features quantifying the anisotropy and complexity of sonar images were 
introduced

8,9
 as promising ways to characterize the seafloor. These features measure the variation 

and average, respectively, of filter responses from a family of two-dimensional Haar-like filters 
rotated at different angles. Although these features are currently the most appealing solution, their 
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performance is limited. Among other issues, these features often struggle to distinguish flat seabed 
from seabed covered by posidonia.  
 
In this work, we instead propose the use of lacunarity, which is a measure of pixel-intensity 
variation, to characterize seafloors in sonar imagery. Lacunarity has been used successfully for 
similar environmental assessment purposes in other domains, such as with imagery from synthetic 
aperture radar (SAR)

10
, hyperspectral

11
, and lidar

12
 sensors. Here we demonstrate that lacunarity 

can be applied to the underwater domain for environmental characterization, which has not been 
shown previously. (Previous work exploiting lacunarity with sonar data used the concept only for 
anomaly detection, namely, to distinguish pure speckle from regions with structure

13
 and to detect 

objects within sand ripples
14,15

.)  
 
The remainder of this paper is organized as follows. Section 2 discusses lacunarity and shows how 
it can be computed quickly. Section 3 provides an overview of the measured sonar data used in the 
experiments and presents some results. Concluding remarks and directions for future work are 
given in Section 4. 
 
 

2 LACUNARITY  

Lacunarity was originally developed as a way to measure spatial structure in binary-valued data
16

, 
but the concept has since been extended to quantify pixel-intensity variation in grayscale imagery

17
. 

In this work, lacunarity is used to characterize the seafloor in sonar imagery. 
 
The lacunarity of a set of pixels in a grayscale image is the ratio of the variance of the pixel values 
to the square of the mean of the pixel values. When the set corresponds to indices that constitute a 
rectangular block of pixels, this calculation can be done quickly using integral images. 
 
An integral image

18
 is an image representation that allows for very fast computation of rectangular, 

Haar-like features at any scale or location in constant time (since the computation does not depend 
on the size of the input). The construct was formulated in the computer-vision field, where it is used 
extensively for real-time applications. 
 
Starting from an original (sonar) image, X, the corresponding integral image, I, is constructed as 
follows. The value at a location (r,c) in the integral image corresponds to the sum of the pixels 
above and to the left of (r,c), inclusive, in the original image, X. The integral image is generated 
using the recursive relation I(r,c) = I(r-1,c) + z(r,c), where z(r,c) is the cumulative sum of pixels in a 
row of the original image, z(r,c) = z(r,c-1) + X(r,c). 
 
This can be efficiently implemented in Matlab in a single line of code:  

I = cumsum(cumsum(X,2),1).  

 
Next let X

p
 indicate the image that results from raising each pixel value to the power p, and let Ip 

denote the associated integral image. Computing the lacunarity over the sonar image X requires 
two integral images, I1 and I2. 
 
The sum of pixel values in a rectangular area about a given location is computed quickly with only 
four array accesses of the integral image, as Sp(r,c) = Ip(r-a,c-b) - Ip(r-a,c+b) - Ip(r+a,c-b) + 
Ip(r+a,c+b), where a and b are the fixed numbers of pixels contained in half of a side (length and 
width, respectively) of the rectangle. Thus, Sp can be computed for an entire image at once without 
resorting to any loops. 
 
After computing Sp for p=1,2, the final lacunarity map (associated with the entire sonar image), L, 
can be quickly computed as L = (nS2 / (S1)

2
) – 1, where n=4ab is the number of pixels summed in 

the rectangle, the exponentiation and division are performed element-wise, and 1 is an 
appropriately-sized matrix of ones. 
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In this work, the size of the rectangle used in the lacunarity calculation is 2 m x 2 m (corresponding 
to a=40 pixels in the along-track direction and b=66 pixels in the range direction, respectively, for 
the high-resolution sonar images). This size is chosen to be large enough to capture distinguishing 
(textural) characteristics of the seafloor, but small enough to respect the short length-scale at which 
seafloor conditions are known to vary. 
 
It should also be noted that particular care must be taken to ensure that the precision of the integral-
image computations is sufficiently high. If not, errors that can accumulate and grow quickly might 
manifest

19
. To verify that the precision used is adequate, one can regenerate the original (sonar) 

image from the integral image via the identity X(r,c) = I(r-1,c-1) - I(r-1,c) - I(r,c-1) + I(r,c) and confirm 
that no errors have been introduced. In this work, double-precision data types were sufficient. 

 
 

3 EXPERIMENTAL RESULTS  

The feasibility of using lacunarity for seafloor characterization is evaluated in this work using real, 
measured sonar data collected at sea. The set of data used in this study was collected by the 
CMRE's SAS-equipped AUV called MUSCLE. The center frequency of the SAS is 300 kHz, and the 
bandwidth is approximately 60 kHz. The system enables the formation of high-resolution sonar 
imagery with a theoretical across-track resolution of 1.5 cm and a theoretical along-track resolution 
of 2.5 cm. A standard SAS image from this system comprises over 14 million pixels. The images 
considered in the following analysis were drawn from data collected during nine major sea 
experiments that were conducted by NURC/CMRE between 2008 and 2014 at various geographical 
sites in the Baltic and Mediterranean Seas. 

 
3.1 Benign Seabed 

First we examine the ability of lacunarity to more finely distinguish benign flat seabed. To this end, 
one example SAS image was selected from each of the nine sea experiments. These nine images, 
which were selected because they were relatively featureless, are shown in Figure 1.   
 
Although the seabed in all of the images is benign, the sediment composition is expected to be 
different, since the geographical locations are diverse. (Sediment maps of the experiment locations 
– i.e., with coarse classes such as mud, sand, gravel – also suggest that the seabed compositions 
should differ.) The lacunarity centered around each pixel in an image is then computed. The 
resulting probability density of these lacunarity values is shown in Figure 2 for each of the nine 
images.  
 
From the figure, it can be observed how the lacunarity values vary slightly among the experiments. 
For example, the lacunarity values are very low for the COL2 experiment, conducted near Riga in 
the Baltic Sea, where the seabed was expected to be composed of mud. The other experiments 
were conducted at various locations in the Mediterranean Sea, where a sandy bottom was 
expected. The lacunarity values for these cases are higher, yet still differ among experiments. We 
hypothesize that the larger the grain size, the higher the lacunarity value. Unfortunately, sediment 
grab samples are not possessed for these specific locations, so a correspondence between 
lacunarity and grain size cannot be established. However, that study would be of interest if the 
sediment samples can be obtained in the future. 
 



186

Proceedings of the Institute of Acoustics 
 
 

Vol. 37. Pt.1 2015 

 

 
Figure 1: One example SAS image of benign seabed from each of the nine sea experiments 
(experiment codes, from top left, row-wise: COL2, CAT1, CAT2, AMI1, ARI1, ARI2, SPM1, 
MAN2, MAN1). 
 

 

 
Figure 2: Probability densities of the lacunarity values computed from the SAS images in 
Figure 1. 

 
 



187

Proceedings of the Institute of Acoustics 
 
 

Vol. 37. Pt.1 2015 

 

3.2 Complex Seabed  

Next we examine the ability of lacunarity to distinguish different seabed types in complex scenes. 
Due to space constraints, results are shown for only two interesting SAS images, though these 
images allow us to discuss various elements of the lacunarity-based approach. One desired result 
is to be able to distinguish benign seabed, posidonia, and rocky areas. Another goal is to be able to 
distinguish benign seabed from ostensibly featureless regions that are actually characterized by 
poor image quality. 
 
To illustrate the appeal of lacunarity for these tasks, we also calculate other features that could be 
used in this context. Specifically, we consider the Haar-filter-based complexity and anisotropy 
features, as well as the simple pixel average (computed over the same sized boxes used for 
lacunarity). 
 
Figure 3 shows one SAS image with a complex scene, while Figure 4 shows the corresponding 
feature “maps” of the four features considered – lacunarity, complexity, anisotropy, pixel average. 
Visual comparison of the SAS image and the feature maps can reveal some of the shortcomings of 
the competing approaches. For example, complexity has difficulty distinguishing the posidonia in 
the upper left portion of the image from benign seabed. To effect a hard segmentation of the 
lacunarity map for the SAS image, a simple set of “class” thresholds is employed: purple, (0,0.3]; 
blue, (0.3,0.8]; green, (0.8,1.2]; red, [1.2,∞). Roughly speaking, these color classes associate to 
seabed types as follows: purple corresponds to poor image quality regions and shadows, blue 
corresponds to benign seabed, green corresponds to posidonia, and red corresponds to rocky 
complex areas. The hard-segmentation result based on lacunarity for Figure 3 is shown in Figure 5, 
where it can be observed that the result is quite reasonable in distinguishing seabed types.  
 
A second set of results is shown for another interesting SAS image, shown in Figure 6. The feature 
maps are shown in Figure 7 and the resulting hard-segmentation based on lacunarity is shown in 
Figure 8. Again, the segmentation result seems very reasonable. Of particular interest is how the 
regions of poor image quality at long range were successfully distinguished from benign flat seabed. 
 
A large-scale, objective assessment of the segmentation capability – with thresholds learned using 
a set of labeled training data – can be conducted in the future on larger data sets. But the present 
anecdotal evidence suggests that the lacunarity-based approach for characterizing the seabed is 
indeed promising.  
 

 

4 CONCLUSION  

A new approach for characterizing seafloor in side-looking sonar imagery was proposed. The 
approach is based on lacunarity, which measures pixel-intensity variation, of through-the-sensor 
data. This simple yet powerful scalar quantity has the ability to distinguish different seabed types 
and to identify regions of poor image quality. Moreover, it can be computed very quickly, making 
real-time seafloor assessments onboard an AUV feasible. 
 
There are several topics that would be worth exploring as future work. If sediment grab samples 
could be obtained at the locations of the imagery considered, it may be possible to establish a 
functional relationship between lacunarity and seabed sediment type. Additionally, if manually 
created ground truth specifying seabed type for a large set of images were created, more principled 
class thresholds could be learned properly and objective measures of performance could be 
obtained.     
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Figure 3: Example SAS image of a complex environment. 

 

 
Figure 4: The values of different features for the SAS image in Figure 3, for characterizing 
the environment. The features, clockwise from top-left are: pixel average, lacunarity, 
complexity, and anisotropy. 

 

 
Figure 5: Example hard-segmentation result of the SAS image in Figure 3 based on the 
lacunarity values, where purple corresponds to poor image quality regions and shadows, 
blue corresponds to benign seabed, green corresponds to posidonia, and red corresponds 
to rocky complex areas. 



189

Proceedings of the Institute of Acoustics 
 
 

Vol. 37. Pt.1 2015 

 

 
Figure 6: Example SAS image of a complex environment. 
 

 
Figure 7: The values of different features for the SAS image in Figure 6, for characterizing 
the environment. The features, clockwise from top-left are: pixel average, lacunarity, 
complexity, and anisotropy. 
 

 
Figure 8: Example hard-segmentation result of the SAS image in Figure 6 based on the 
lacunarity values, where purple corresponds to poor image quality regions, blue 
corresponds to benign seabed, green corresponds to posidonia and sand ripples, and red 
corresponds to rocky complex areas. 
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