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l. INTRODUCTION

The sonar environment is well known to be a difficult one in which to use adaptive processing

techniques. Many difficulties are present such as multipath, charmel effects and reverberation.
Due to the complexity of the water environment these problems are often considerably worse
than the analogous conditions in radar.

In this paper we are concerned with a different set of problems which are encountered when
adaptive processing is used in the sonar environment. In sonar. due to the necessary sampling
conditions it is often only possible to have acomparatively small number of samples or snap-
shots with which the adapted weights must be calculated. This condition, as explained below,
leads to weight jitter and a consequent degradation in performance.

We shall concentrate on a sonobuoy system in which preprocessing has already been carried out

making a narrowband adaptive approach appropriate. Stress will be given to such asituation
with a jammer present. The source of this interference may be due to a deliberate counter meas—
ure in the water or due to a nearby noise source such as a ship.

2. WEIGHT JI'ITER

We are interested in a sample matrix inversion approach to adaptive beamforming. Figure 1.

shows a schematic of a narrowband beamformer. The scalars {xl(t),x2(t) .... ..x~(t)}

formed from the observations taken at the N sensors at a time ‘t’ are processed by the weights

{WP wz .... ..wN} . The output from the summer is given by w"x(t) where H denotes the her-

mitian transpose and the vectors w and x are formed from the scalar weights and the samples

respectively. The beamformer output is then WHRW where R is the N x N covariance matrix

given by the expression E{xx” } where E{) denotes the expectation operator. We shall assume

that x(t) is widesense stationary and in the estimation process the expectation operation can be

approximated by time averages.

It is normal to require that the beamformer output be minimised subject to constraints. We begin
by assuming a single look direction gain constraint:
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cHw -= 1 equation I

where c is termed the constraint vector. It is well known [1] that the weight vector which maxim-

ises SNR whilst satisfying equation 1 is given by

w a L45— equation 2
a" cHR'lc‘

We begin by briefly discussing the result of using this equation.

 

Figure 1. Schematic of narrowband beamformer

2.1 Weight jitter with estimated covariance matrix

The array considered is shown in plan view in figure 2 and is chosen to be no more than ‘typical'

of sonobuoy configurations in use. No effort has been made to optimize hydrophone positions

since such an analysis would take us outside the scope of this paper. Neither do we investigate

the role of taper weights in the beampatterns. However a method for optimizing taper weights for

an arbitrary array is discussed elsewhere[2]. The array consists of three concentric circles with a

third of a wavelength spacing between sensors on the same spar. All taper weigth are taken to

be unity.

Figure 3 shows the quiescent beampattem for the array of figure 2 appropriate to a look direction

at 0° azimuth. All sidelobes are below -1 ldB and the beampattem exhibits a 3dB beamwidth of

about 28°. Figure 4 shows the adapted beampatterns obtained using equation 2. The covariance

matrix has been estimated by using 36 snapshots of data (corresponding to twice the number of
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hydrophones present). 5 separate sets of noise have been used. For the purpose of simulation the

noise is taken to be Gaussian, white and uncorrelated from sensor to sensor. The noise power is

taken to be OdB at a sensor. Also a jammer of power 30dB (at a sensor) has been introduced at

60°. It is clear from figure 4 that the array maintains a OdB response in the constraint direction

and introduces a null in the direction of the jamrner. However, it is also clear that, in general. the

sidelobes fluctuate widely from one simulation

to the next.

 

9 Hydrophone

Figure 2. Sonobuoy configuration considered. 0" azimuth is taken to lie along the dotted line.

The presence of jitter can be shown to be extremely deleterious in signal processing resulting in

appreciable reductions in the signal to noise ratio as well as altering the output noise statistics.[3]

The reason for this sidelobe jitter can be traced back to fluctuations in the calculated weights of

equation 1. These fluctuations can be thought of as being related to spurious correlations in the

covariance man-ix. Consequently one way to reduce these sidelobe fluctuations is to increase the

number of snapshots used in the formation of R. This, of course is not always a viable approach

and other methods of reducing the sidelobe jitter must be found.

3. METHODS OF REDUCING JI'I'I'ER EFFECTS

In this paper we shall discuss two methods of reducing sidelobe jitter: the penalty function

method and an eigen-decomposition approach.

3.1 Penalty function approach

The use of this method has been shown to be effective, straightforward to implement and con-

ceptually simple to understand [4]. The main thrust of the technique is to maximise the output

SNR of an array subject to a set of secondary conditions which need be satisfied only approxi-

mately. The degree to which these sofi constraints are satisfied can be thought of as being deter-

mined by a set of user defined parameters.
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Figure 3. Quiescent beampattem for array of figure 2. A11 taper weights are taken to be unity.
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Figure 4. Adapted beampattems for array of figure 2. A jammer of 30dB is present at 60°. 5 inde-

pendent white Gaussian noise samples have been used. The sidelobe variation can be seen to be

extreme from set to set.
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The constraint imposed in this soft fashion is one which requires the beampattem obtained after

adaptive beamforming to approximate to the quiescent bearnpattem. This desired quiescent

beampattem is defined by a weight vector wq and the adaptive beampattem obtained by a

weightvector w. The difference between the two beampattems at a particular direction (6, it)

can be defined as (where for completeness we consider azimuth and elevation):

e(e, ¢) = s”(e, ¢)w- s”(e, ¢)wq 2 equation3

where 5(9, 4:) is the steering vector appropriate to the direction (9, ¢) . The actual important

quantity is a weighted integral of this expression over all directions of interest. If we denote this

total error by E and the weighting function by k2h(0, ¢) where k is a scalar weighting and

h(6, :13) is a scalar, well behaved, function defined over the region of interest. h(e, it) gives

emphasis to parts of the beampattern around (6, 4)) where h(8, ¢) is large. The total weighted

error is given by

E = k2(w — wq)”[Ih(0, ¢)s(9, ¢)sH(e, ¢)(de)d¢](w - wq) equation 4
S

The term in square brackets defines an N x N matrix which we denote by Z. If we also impose a

look direction gain constraint as defined in equation 1 it can be shown that [4] the optimum

weightvector is given by

A'lc sz‘lccHA-llwq
wo t :1 — —_.—————-

p cflA-lc CHA_1€

where for simplicity of notation we have defined the matrix A = R + k2Z.

+ [£2.44qu — equation 5

It can be seen that

(i) as k —) 0 we re-obtain the result of equation 2. Equivalently this can be seen as making the

constraints on beampattern negligibly small so that we return to what may be thought of as the

classical textbook case and hence exhibiting jitter as in figure 4.

(ii) as k —) no the optimum weight vector w t —) wq. This is intuitively to be expected: as the
up

constraint on the beampattern is increased the obtained bearnpattem approaches the desired or

quiescent pattern until in the limit the two patterns become identical.

It is worth commenting at this point that case (ii) is not necessarily desirable since in such asitu-

ation although the sidelobe jitter is driven towards zero the array becomes unable to adapt and

the system becomes equivalent to conventional beamfomting.

It has been found that often the full complexity of equation 5 need not be used and in fact the

matrix Z can be taken to be equal to the identity matrix. The details of this approximation will

not be discussed here but theconsequences for a linear array are discussed in reference 4. This

Proc. |.O.A. Vol.17 Part 8 (1995) 309



  

Proceedings of the Institute of Acoustics

JI'I'I'ER REDUCTION IN ADAPTIVE SONAR SIGNAL PROCESSING

simplified form for Z will be used in the results section presented below.

3.2 Eigen-decomposition approach

The basic principle of this approach involves adapting separately to the two sets of interference

components i.e. the noise and the jammers. Partitioning uses an eigen-decomposition

R = UAU" where again R is the signal free covariance matrix, U is a unitary matrix and A is

a diagonal matrix containing the eigenvalues of the decomposition. Two possible approaches are

discussed in this section to utilise this decomposition

i) the noise partition is simply replaced by a normalised subspace on a batch to batch basis.

ii) an average of the noise partition is performed over a number of batches to improve the

estimate and thus reduce weight jitter.

We observe that the first method. though simple in concept, implicitly assumes an a priori

expectation of noise (without interferers) defined by 021 whereas the second method involves

estimating the prevailing noise subspace statistics.

3.2.1 Rank-reduced adaptive cancellation

Discriminating between the larger and smaller eigenvalues of a symmetric eigenvalue decompo-

sition R = UAUH provides a convenient means of partitioning a spatial sample matrix R , into

two orthogonal subspaces:

U,A,0J” +UnAn 11"" equation 6
where the subscript J refers to the set of larger eigenvalues and subscript n refers to the smaller

values. The first. jammer, subspace. defined by the column vectors UJ, should span the same

subspace as that defined by the spatial direction vectors of strong interferers. These can then be

processed separately from the subspace defined by the smaller noise. eigenvalues An and their

corresponding eigenvectors Uu. Clearly, strong interference must be heavily suppressed by the

adaptive cancellation or prewhitening transform. Any wanted signals in this subspace are also

suppressed because the jamming is. in this case, essentially ‘mainbeam'. Signals can only be

detected easily in the complementary ‘noise' subspace spanned by the set of vectors that form

the columns of the matrix Uu.

If we can assume that the expectation of the noise components with no jammers present is spa—

tially white. then the relevant subspace eigenvalues can be set to be 02. In this simple method of

stabilization. R’1 is replaced by:

UJAJ'1UJH + U,,U,,”/o2 equation 7

The value of the exponent z is not critical and can be set between 1 and infinity according to the
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degree of interference cancellation required. Higher values of z lead to a greater depth of nulls.

These are required if, for example, the pdf of interferers is significantly non-Gaussian (impulse-

like). In this case the eigenvalues AI could be considerably lower than the peak power of inter-

ferers and, if z is set to l, the adaptive nulls would not be sufficiently deep. Other non-linear

functions of AJ may be considered if necessary.

Since, in equation 7, the noise subspace is simply scaled by 02 , adaptive prewhitening is

restricted to the subspace of large eigenvalues and we can regard the proposed method as provid-

ing reduced-rank adaptive cancellation. The concept is similar to that of sidelobe cancellation

where the number of cancellation loops is often restricted to avoid a similar ‘weight jitter’ prob-

lem.

It is well known that the sample matrix R is rank deficient (singular) if the number of samples

used is less than the number of sensors. A unique sample matrix inverse R does not then exist

but, we realise from equation 7. that the missing components in R can be replaced using default

eigenvalues 02 . Clearly this solution to the singular problem relies on the assumption. rightly or

wrongly depending on the application. that the true expectation of the noise covariance (exclud-

ing strong interferers) is spatially white.

3.2.2 The double average method

Ideally, if the noise is not white, then to stabilise ‘weight jitter' in the noise subspace, we need to

devise a ‘double-average’ method where the weaker subspace components are averaged over

more samples. It is intended to fully investigate this more general method of stabilising weight

jitter in a later paperIS]. Briefly, it is essential that the second average is performed on a full rank

noise-only matrix. We therefore suggest averaging U162U1H+ U"Anti: over several batch

estimates of R where 62 is itself an average of A" both within a batch and over the several

batches. The resulting estimate of the noise only covariance matrix R for the group of batches

can easily be updated from batch to batch. The prewhitening transform for each of the batches in

turn is evaluated using:

UJAJ“UJ"+ U,.(diag(U,.”I'rU,.))“Uf.’ equation a

where the diagonal matrix replaces 1/02 in equation 7. A recursive procedure with a forget fac-

tor can be adopted in place of the batch method described above.

4. RESULTS

We shall, for concreteness, concentrate on how the penalty function method behaves when

applied to the weight jitter problem as experienced by the array of figure 2 as exemplified by the
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Figure 5. Adapted bearnpattems for array of figure 2. A jaran of 30dB is present at 60° (indi-

cated by he vertical line). 5 independent white Gaussian noise samples have been used. The pen-

alty function method has been used as explained in the text.

Various parameter selections need to be considered when applying the penalty function. The

most important are the selection of h(8, ¢) and k in expressions 4 and 5. Since we are dealing

with a sonobuoy with no vertical resolution we can ignore resolution in the 6 direction. Conse-

quently we are only interested in azimuthal discrimination. It has been shown elsewhere that for

certain arrays the Z matrix of equation 5 can be chosen to be diagonal with the consequence that

the adapted beampattem is most closely fitted to the quiescent beampattem in regions close to

the look direction. The value of k is chosen to be 10.0, although. as will be shown and discussed

below acceptable values actually fall within quite a broad range.

We choose a relatively simple signal/jammer scenario in order to allow straightforward analysis

of the results. A look direction gain constraint is imposed in the direction ¢ -= 0 °. A jammer of

30dB is present at 60°. The noise is again taken to be white. Gaussian and uncorrelated from

hydrophone to hydrophone with a power of OdB at each hydrophone. A OdB signal is present

during adaption and is uncorrelated with the jammer.

Figure 5 shows the results of such a simulation for five different noise samples. The visible

reduction in jitter is marked. We shall not make a quantitative investigation of jitter reduction at

this point but rather refer the reader to reference 4. In fact for the resolution shown the jitter has

become almost unobservable. However. the beampattem has adapted in the required way:
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i) A null has been formed in the direction of the jammer.

ii) The quiescent beampattem has been retained at directions away from the jammer.

iii) The MR response is present at 0°.
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Figure 6. SNIR as a function of the parameter k (the hardness parameter).

It is interesting to consider how the penalty function method performs for varying values of the

‘hardness parameter' k. Consequently, figure 6 shows the variation of SNIR for varying k for

the signal/jammer configuration discussed above.

For values of k between approximately 3 and 20 the SNR is seen to exhibit a fairly flat plateau.

However, as k is decreased below 3 it can be seen that the SNIR falls. levelling OK at a value of

approximately 3dB as k approaches 0 and we return to the extreme weight jitter situation of fig-

ure 3.

For values of k greater than 20 there is a much more rapid decline in SNIR. This is due to a

reduction in the depth of the null at 60". As was pointed out above as k becomes larger the

adapted pattern is forced closer to the quiescent pattern until in the limit as k —) no they become

identical. In this extreme case the sidelobe would be at approximately -15dB hence providing an

insufficient amount of nulling for the 30dB jammer.

5. CONCLUSION

It has been shown how a poor estimate of the covariance matrix can cause weight jitter and how

this may cause a deleterious effect for adaptive processing when using a sonobuoy (although this
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is generally true for adaptive sonar).

We have presented, in brief. two methods by which weight jitter effects can be significantly

reduced.
The penalty function method which is simple to apply and understand and, at least for the exam-

ples presented, computationally simple to implement. It requires only a choice of the function

h(9, ¢) which determines the parts of the beampattem which are most closely controlled and a

parameter k which determines the overall fit of the beampattem. (The best value of this parame-

ter has been shown to be directly dependent on the noise power [4] which must be evaluated by

separate means). The full power of this method by which h(6, o) is chosen to use a priori infor-

mation has not been investigated here.

 

A second, eigenvalue based, approach in which the jammer and noise subspaces are separated

and the weight jitter removed by, in effect, forcing the noise eigenvalues to be equal. This simple

method, however, can be usefully extended to the ‘double average method’ which uses an esti-

mate of the noise gained over long periods of time combined with jammer statistics averaged

over comparatively short periods of time (appropriate to stationary noise and intemtittent jam-

ming).

It was shown how the penalty function method can be used to reduce weight jitter substantially

whilst still retaining nulling. Further more testing evidence of the efficacy of the method can be

found in the literature. We do no more than note in passing that similar results can be achieved

with the eigenvalue approach[5].

It is clear, then, that the two methods discussed can be used to decrease the effects of jitter but as

distinct methods can also offer extra advantages depending on a priori information.
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