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1  INTRODUCTION 

The responses of nominally identical, complex, built-up structures vary from one realisation of the 
structure to the next. These variations are due to many factors including manufacturing variability 
and changes in environmental conditions. These variations cause differences in the dynamic 
frequency response between individual realisations. Inconsistencies in the measurement process 
will also influence the measured response. 
 
At higher frequencies modelling techniques should consider parameter uncertainty. At high 
frequencies stochastic methods such as Statistical Energy Analysis are used to calculate average 
response energy in frequency bands. Such methods lose detailed response information, but in turn 
are intrinsically less affected by small variations in the properties of the structure. However, low 
frequency techniques such as Finite Element Analysis are based on modelling a single realisation 
of the structure and as such take no account of product variability. Ideally an ensemble of different 
realisations of the structure would be modelled and a corresponding set of response data 
generated. But computational costs increase significantly with the complexity of the structure being 
considered and the frequency range of interest. Even for a relatively modest structure this cost is 
prohibitively high, making it impracticable to simulate a batch of components.  
 
Various techniques are being investigated to include variability in the modelling process. However, 
in order to model the vibration response of structures with uncertain properties, some knowledge is 
required as to the nature and statistics of the typical variability found in manufactured components. 
Variability in the physical properties of a system will lead to variability in the system response. The 
statistical distribution of both the system physical properties and the system response and their 
relationship are of interest. Currently very little published data is available on the statistical 
distribution of variability within manufactured components or the relationship between the 
inconsistencies in the physical properties and the statistics of the measured response. This paper 
investigates the variability in the mass and natural frequency of a single complex component (a 
vehicle alloy wheel rim) and the variability in structure-borne and air-borne response of a complex 
built-up structure (an automotive vehicle).  
 
In order to gain further insight into the propagation of variability through a system from the physical 
properties to the response distribution, a complementary simple idealised single degree of freedom 
system is also considered. Two analytical methods are used, a transformation of variables 
technique1 and a power series expansion with moment generation. These are used in conjunction 
with Monte Carlo simulations.  Kompella and Bernhard2 discuss these methods with reference to 
the prediction of statistical variation of multiple-input-multiple-output system response.  
 
 
2 VARIABILITY STATISTICS IN NOMINALLY IDENTICAL 

STRUCTURES 

In order to gain some knowledge of the typical measured variability, the statistics of the response of 
two different types of structure are investigated. Firstly, a vehicle alloy wheel rim is considered, 
followed by measured data from two automotive vehicles.  
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2.1 Statistics of Properties of a Single Complex Component  

This section considers the statistical analysis of the first four natural frequencies and mass of an 
alloy wheel. The measurements were taken and reported by Brown and Gear3, who measured 
these properties for a set of 79 nominally identical alloy wheel rims. 
 
Figure 1 shows the distribution of the data together with Gaussian distributions with the same mean 
and variance. A chi-squared ( )2χ analysis4 was conducted to test the goodness-of-fit of various 

probability distributions to the data sets.    
 
In general a lognormal distribution closely approximates a Gaussian distribution for data sets where 
the standard deviation is small compared to the mean value, such that 1σ µ << , where σ  and µ  
are the standard deviation and mean respectively. This is certainly the case for the above data and 
hence the samples fit both distributions equally well. Either a lognormal or a Gaussian distribution 
was found to be a ‘good’ fit (i.e. with a 2χ  probability of between 5-95%) for the first, third and 
fourth mode. Neither distribution was a likely fit to the second mode nor to the distribution of the 
mass; both of these have a high number of samples close to the mean with a low and sporadic 
spread. Depending on the manufacturing and finishing process, the mass might have been 
expected to be a good fit to a Gaussian distribution but this was not found to be the case. 
 
Brown and Gear3 examined the cross correlation between the natural frequencies and the mass of 
the wheel, but no correlation was found. They also examined the cross correlations between the 
natural frequencies and found some correlation between the first and second mode. It was 
surmised that this could be due to the mode shapes for both modes being similar, but this didn’t 
appear to be valid for the third and fourth mode which, although similar in mode shape, didn’t 
display any significant cross correlation. 
 
2.2 Response Statistics for a Complex Built-up Structure 

A statistical analysis of the response distribution for a set of nominally identical, complex, built-up 
structures has been performed. The aim of the investigation was to better understand the probability 
distribution of the variability of the structures’ responses. The example considered is of an 
automotive vehicle; results are available for two different vehicle models, the Isuzu Rodeo (98 
nominally identical vehicles) and the Isuzu Pickup (57 nominally identical vehicles). The data used 
for this investigation is reported in Bernhard and Kompella5-7. For each vehicle set both structure-
borne and air-borne frequency response functions (FRFs) were available. Some statistical analysis 
of the same data had previously been carried out by Kompella and Bernhard2, this study extends 
that work and looks for any variation in the response distribution with frequency. The FRFs are 
shown in Figure 2. 
 
Both vehicles were tested using an identical test procedure; a brief summary will be given here but 
for further details see References5-7. Vehicles were tested outside in a quiet environment. Structure-
borne FRFs were measured using an impact hammer on the wheel hub to provide the excitation. A 
loudspeaker situated outside the vehicle at the front left wheel position provided acoustic excitation 
for the air-borne FRFs. Band-limited random noise was used as the acoustic source. Interior 
microphones at the drivers and passengers ear locations were used as response transducers. The 
air-borne and structure-borne FRFs provide good data between 125Hz-1kHz and 30-500Hz 
respectively.  
 
During the vehicle testing, in order to assess the measurement process variability, a reference 
vehicle of each type was tested repeatedly throughout the test schedule. This provides an indication 
of the measurement procedure variability compared to the population variability. Figure 3 shows a 
comparison of the population mean, standard deviation and normalised standard deviation as a 
function of frequency together with those of the reference vehicle.  
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As can be seen from Figure 3 the reference vehicle mean is approximately equal to that of the 
population indicating that the reference vehicle is a typical sample from the population. Also the 
population standard deviation is in general twice that of the reference vehicle. This indicates that the 
variation in the sample population is predominately due to vehicle variability and not measurement 
variability. Also worth noting in Figure 3 is the normalised standard deviation: there is a trend 
towards increased normalised standard deviation at higher frequencies, as the modal overlap 
increases. 
 
Further analysis included basic statistical analysis of the response distributions (mean, standard 
deviation, skew and kurtosis) and these were examined to look for trends relating to the mean level 
of the response. Techniques such as band averaging were also investigated. Standard probability 
distributions were fitted to the response distribution at each frequency line and a 2χ  test was used 
to test the goodness-of-fit of the distribution to the sample data set. The more interesting results will 
be discussed here. 
 
Figure 4 shows FRFs and a Gaussian distribution fitted to two example frequency lines at 52.5Hz 
and at 375Hz. A Gaussian distribution was found to be a good fit to the linear response data over 
most of the frequency range. Some difference was noted between the goodness-of-fit at low 
frequencies compared to higher frequencies. At higher frequencies both the modal overlap and the 
variability are high. A summary of the results for the 2χ  test is given in Table 1. For comparison a 
summary of the goodness-of-fit of a lognormal distribution is shown in Table 2. The results are 
presented as the percentage of frequency lines for which the 2χ  probability is between 5-95% 
which is considered to be a good fit, above 95% which is considered to be a poor fit and below 5% 
which is considered to be an improbably good fit. A dummy data set of pseudo-random numbers, 
known to come from a Gaussian distribution, was generated. This was used to indicate the typical 
results that can be expected from a random Gaussian data set of similar size to the sample data 
sets. It can be seen that for the lognormal distribution 12-20% less of the frequency range was a 
‘good fit’ (with a 2χ  of 5-95%), and a corresponding 12-20% more of the frequency range was a 
‘poor fit’, when compared to the goodness-of-fit to a Gaussian distribution. 
 
A detailed analysis of the low/high frequency ranges displayed some differences in the 2χ  
probabilities. For three of the four sets of FRFs, between 3-7% more of the frequency lines at low 
frequencies were found to be a better fit to a Gaussian distribution, than those at high frequencies. 
For the structure-borne FRF the low frequency range was considered to be 30-300Hz, high 
frequency as 300-500Hz. For the air-borne FRF the low frequency range was considered to be 125-
500Hz, high frequency as 500-1000Hz.  
 
In summary, the discrete frequency response statistics can be described well by a Gaussian 
distribution, and much less well by a lognormal distribution. 
 
In a very complex built-up structure with many degrees of freedom, such as an automotive vehicle, 
then the distribution of the response may be influenced by the central limit theorem4. The central 
limit theorem describes the case where samples are taken from a population with an arbitrary 
probability distribution. As the number of samples increases the distribution of the resultant set 
tends towards a Gaussian distribution irrespective of the distributions of the individual random 
parameters. This may be the type of effect being seen in complex built up structures, where the 
probability distributions of the components may be a random distribution dependent on the 
individual component characteristics and manufacturing process. But the effect on the built-up 
structure may be to tend towards a Gaussian distribution of the response, particularly where the 
response isn’t dominated by a small number of degrees of freedom.  
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3  VARIABILITY IN A SIMPLE IDEALISED SYSTEM 

To gain a better understanding of the effects and propagation of variability through a system, a 
simple idealised single degree of freedom (SDOF) example was considered. A physical analogy 
would be a simple component, which due to manufacturing inconsistencies, exhibited small random 
variations in its properties, leading to a range of responses within a batch of components. The 
statistics of the resulting response is examined at low frequencies (well below the resonance 
frequency of the system), at resonance and at high frequencies (well above the resonance 
frequency of the system). For this study the system properties were assumed to be independent; in 
practice this is unlikely to be the case as variability in a component is likely to affect more than one 
system property. A further assumption made is that variability is only introduced into a single system 
property at any one time. When varying a system property it is assumed that the statistics of the 
variation are known. However, there is no limitation in the analysis methods used as to the type of 
distribution for the random variation. In this study two variability distributions are used, Gaussian 
and Rayleigh; both have zero mean and specified variance.  
 
Three methods are explored for estimating the response statistics: Monte Carlo simulations, a 
perturbational approach and a change of variable technique. These techniques are outlined below. 
 
3.1  Monte Carlo Simulations 

Monte Carlo simulations have become progressively more routine with the increase in computing 
power and the decrease in computing costs. The method can be summarised in the following steps. 
The probability density functions for the input parameters are established. Random values are 
generated from each of these input parameter probability distributions. These values are used to 
calculate an exact output response for that particular set of random input values. Another set of 
random input values are generated from the input parameter probability distributions, and again the 
exact output response is calculated. This process is repeated a number of times to generate a 
statistical set of output response data. The accuracy of the resultant simulated output response data 
set is dependent on the number of simulations carried out.  
 
This method has the advantage of being simple to use and, provided the functional relationship 
between the input and output parameters can be expressed mathematically, there are no limitations 
to the complexity of the system that can be modelled. However, the method is inflexible and cannot 
account for any changes to the system. It also requires significant amount of computing time, and 
this requirement increases for the number of simulations required.  
 
Various Monte Carlo simulations were performed on a SDOF system, for the combination of 
variable mass, stiffness, damping and natural frequency, at low frequencies, high frequencies and 
around resonance. For each simulation 10,000 random data sets were used to generate the 
resultant response population. These response distributions were then used to compare to the 
following techniques discussed below. 
 
3.2  Response Statistics Estimation through a Perturbational Approach 

The moments of the system response can be related to the moments of the system inputs or in this 
case the physical properties of the system. This method is sometimes referred to as the ‘Generation 
of Moments’ method. An example of the calculation is shown below for the case of variable stiffness 
at low frequencies.  
 
Assume the system stiffness k  is allowed to vary by a small random amountε , where ε  is a 
normally distributed random variable with zero mean ( )0εµ =  and low variance ( )1εσ << , such that 
  

 0 (1 )k k ε= +  (1) 
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where 0k  is the nominal unperturbed stiffness of the system.  The magnitude-squared receptance 
of a single degree of freedom system is given by  
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where X  is the magnitude of the response, F  is the magnitude of the harmonic excitation force at 
frequency ω , m  and c  the system mass and viscous damping constant respectively, nω  is the 
natural frequency of the system and ζ is the viscous damping ratio. At low frequencies where 

1nω ω << , this can be approximated by 
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using Equation (1) this becomes 
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This can be expanded in a general power series to give  
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If higher order terms are ignored, the expected or mean value of ( ) 22
0k α ω is given by  
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The moments of ε  depend on the statistical distribution of the variability. For example, if ε  is 
assumed to be Gaussian distributed such that the probability density function for ε  is given by  
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the first few moments of ε  are given by  
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Therefore Equation (6) can be re-written to give the mean of the magnitude-squared receptance at 
low frequencies, such that  

( ) ( ) ( )2
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This process can be repeated for high frequencies and at resonance, for variable stiffness, mass 
and damping, and for any chosen variability distribution for which the moments are known or can be 
calculated. This method can also be used to estimate the variance of the response using the same 
principles.  
 
However, there are several limitations on the practical use of this method. The power series 
expansion requires certain limits for convergence. It can be shown that for the estimations of the 
response statistics around resonance, the variability must be small compared to the half-power 
bandwidth of the system, so that 

n

ωε
ω
∆<<  (13) 

 
where ω∆  is the half-power bandwidth. So that the power series expansion converges for all 
members of the Monte Carlo simulations it is therefore necessary that the standard deviation of ε  
is small compared to the half-power bandwidth, nεσ ω ω<< ∆ . Otherwise for the regions away from 
the resonance frequency  
 

1ε <<   (14) 
 
for convergence. Another limitation is the restricted information that can be obtained using this 
method. Although the mean and the variance of the response can be estimated, it cannot be used 
to determine the distribution of the response. Finally, this method is also limited to simple systems 
where the relationship between the system response and the input parameters can be expressed in 
a form suitable for a power series expansion.  
 
A comparison was carried out between the estimations of mean response and response variance 
from this perturbational approach and the results from Monte Carlo simulations. Evaluations were 
carried out for each case of variable mass, stiffness and damping, at low frequency, high frequency 
and at resonance. Each scenario was repeated for both a Gaussian and Rayleigh distributed 
variable input property. The maximum error between the Monte Carlo simulations and the estimates 
from the perturbational method was 3%. Increasing the number of Monte Carlo simulation runs and 
incorporating higher terms in the power series expansion were shown to reduce this error.  
 
3.3 Response Distribution From Transformations of the Probability Density 

Functions  

If the functional relationship between two random variables is assumed to be single valued, and the 
probability density of one of the variables is known then the probability density function of the other 
can be determined1,4. For example, given two random variables x  and y , for which 

( )y f x=  (15) 

where the probability density function of x  is given by ( )p x , the probability density function for y  
is 
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If each value of y  corresponds to n  values of x , then  
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As an example at low frequencies ( ) 2α ω can be approximated as 

( )
( )

2
_ 22

0

1

1
low freq

k
α ω

ε
≈

+
 (18) 

 
If ( )p ε is given by Equation (7) then 
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As can be seen from Equation (19) the form of the probability density function of the response 
distribution is somewhat similar to that of a Gaussian distribution. This process can be performed 
for any chosen variability distribution for which the probability density function is known. If the 
variable input property or physical parameter has a Gaussian distribution then the following 
observations can be made.  In general the system response near resonance, for any varying 
system property that controls the resonance frequency (mass, stiffness or natural frequency), the 
distribution is a one-sided probability density function. For the regions where the system properties 
affect the response level the distribution can be seen to approximate a Gaussian distribution (e.g. 
variable stiffness at low frequencies, or variable damping at resonance).  
 
If the variable input property has a Rayleigh distribution then the following comments can be made. 
As with the Gaussian example, the system response near resonance for any varying system 
property that controls the resonance frequency (mass, stiffness or natural frequency) the distribution 
is a one-sided probability density function. For the regions where the system properties affect the 
response level there are two slightly different distributions. For variable natural frequency where the 
level of the response is affected (i.e. high frequencies) the response distribution is approximately 
Rayleigh. But, for the other variable properties (stiffness, mass, damping) where they control the 
level of the response the resultant distribution is similar to a Rayleigh distribution but with a right-
hand skew instead of a left-hand skew. 
 
Tables 3 and 4 summarise the response probability distributions for a Gaussian distributed and 
Rayleigh distributed input property.  
 
The limitations of this method are that the relationship between the input variables and the system 
response is relatively simple. As this relationship becomes more complicated then the integrals 
must be evaluated numerically. However, when applied to a simple system this method does give 
an analytical solution to the probability distribution of the system response. 
 
A comparison was carried out between the estimated mean and variance of the response 
distribution using this method to that obtained from the Monte Carlo simulations. The maximum 
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error between the two methods was 2.5%, this was shown to reduce by increasing the number of 
Monte Carlo simulation runs.  
 
 
4  CONCLUSIONS 

The measured variability in the mass and natural frequency of a single complex component (a 
vehicle alloy wheel rim) and the variability in structure-borne and air-borne response of a complex 
built-up structure (an automotive vehicle) have been investigated. The goodness-of-fit of the 
response distributions was examined using a 2χ  test. In the case of the alloy wheel rim due to the 
low standard deviation of the distribution of the modes compared to their mean values, either a 
lognormal or a Gaussian distribution was found to be a good fit for three of the first four modes. The 
mass of the wheel rim was found to be a poor fit to a Gaussian distribution. In the case of the 
automotive vehicles, two vehicles were examined, the Isuzu Rodeo and the Isuzu Pickup. The 
distribution of the response for both the airborne and structure-borne FRF was shown to be a good 
fit to a Gaussian probability density function for approximately 80% of the frequency range. A 
slightly better fit was obtained at low frequencies where up to 7% more of the frequency lines were 
a good fit to a Gaussian distribution when compared to those at higher frequencies. It can be 
concluded that, for these examples the response distribution can be well described by a Gaussian 
distribution. The fit to a lognormal distribution was substantially lower. 
 
In order to study the propagation of variability through a system from the physical properties to the 
response distribution, a simple idealised single degree of freedom system was considered. Two 
analytical methods were investigated, a transformation of variables technique and a power series 
expansion with moment generation. These were used in conjunction with Monte Carlo simulations 
to examine the effectiveness of each method. The conclusions from this investigation are as 
follows. Both techniques considered can be used to estimate the statistics of the response provided 
the statistics of the input variable are assumed or known. The accuracy of each method is 
independent of the input distribution. The response distribution has two distinct behaviours; near 
resonance the response is a one-sided distribution, away from resonance it is controlled by the 
input distribution. There are limitations on both techniques that the system output random variable is 
a relatively simple function of the input random variables; this limits the usefulness of the methods 
for more complex structures. 
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0.01b = , averages = 10000, Rayleigh distributed input variable 
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Figure 1: The frequency distribution of the first four modes and the total mass of the alloy 
wheels. The equivalent sample numbers from the corresponding Gaussian distributions with 
the same mean and standard deviation as in the original data set are also shown. 

Figure 2: Vehicle FRFs, Rodeo Structure-borne FRFs: (a) dB and (b) linear response of 98 
vehicles 
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Figure 4: (a) Rodeo Structure-borne FRF, Distribution of Response at (b) 52.5 Hz and (c) 375Hz, 
Gaussian distributions fitted.  

(a) 

(b) (c) 

Figure 3: Comparison of Population Statistics to Reference Vehicle Statistics, Rodeo Vehicle 
Air-borne FRFs: (a) mean vs. frequency, (b) standard deviation vs. frequency,  
(c) normalised standard deviation 

(a) 

(b) 

(c) 
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