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1. INTRODUCTION

In this paper a mathematical model for an acoustic time dependent scattering problem involving smart
obstacles is formulated. Smart obstacles are obstacles that when hit by an incoming acoustic field react in
order to pursue an assigned goal. The goal pursued by the smart obstacle considered in this paper in the
“forward scattering problem is: to appear in a location in space different from its actual location eventually
with a shape and boundary impedance different from its actual ones. We call this goal: to appear as a ghost
obstacle. The smart obstacle pursues its goal circulating a pressure current (i.e. a quantity whose physical
dimension is pressure divided by time) on its boundary. We show that the pressure current necessary to
pursue the goal can be determined as the solution of a suitable optimal control problem for the wave
~ equation. '

The author and its coworkers have studied similar models for sevéral other classes 0‘f smart obstacles. in
acoustic and  electromagnetic scattering (see for example [1]-[6] and ‘the = website:
http://www.econ.univpm.it/recchioni). The obstacles considered pursue one of the following goals:

1. to be undetectable (i.e.: furtivity problem), o . :

2. to appear with a shape and a boundary impedance different from its actual shape and impedance (i.e.:
masking problemy, . , ,

3. to appear in a location in space different from its actual location eventually with a shape and boundary
impedance different from its actual ones (i.e.: ghost obstacle problem). ‘

The direct scattering problems corresponding to 1.-3. have been formulated as optimal control problems for
the wave equation (acoustic case) or for the Maxwell equations (electromagnetic case) and the first order
optimality conditions for these control problems have been derived applying the Pontryagin maximum
principle and solved with appropriate numerical methods on several test problems. Several other approaches
to study smart obstacles have been considered in the literature, see for example [71-[10].

In this paper time harmonic inverse scattering problems involving smart obstacles are also studied.The
inverse scattering problem considered is the following: given the knowledge of several far fields generated
_by the smart obstacle when hit by known incident acoustic fields it reacts with the optimal strategy and the
knowledge of the goal pursued by the obstacle find the obstacle (i.e. find the shape, acoustic impedance and
spatial location of the obstacle). For simplicity in this paper we limit our attention to the case of the obstacle
that tries to be masked when the incoming acoustic field is time harmonic (that is the time harmonic inverse
masking problem). Moreover in the inverse problem we assume that the acoustic boundary impedance of the
obstacle and of the mask are known. In this case the direct scattering problem is_translated in a constrained
optimization problem and its solution is characterized as the solution of a set of auxiliary. equations, that is a
boundary value problem for a system of two Helmholtz equations. The inverse scattering problem is
translated in an inverse problem for the system of two Helmholtz equations mentioned above see [11].
Material related to the problems described here is contained in the websites: oo
http: //www.econ.univpm.it/recchioni/w8, http: /iwww.econ.univpm.it/recchioni/w13.

Vol.28.Pt.5.2006




' Proceedings of the Institute of Acoustics

2. THE GHOST OBSTACLE OPTIMAL CONTROL PROBLEM

Let Qc:R3 Q; cR3 be two bounded simply connected open sets with locally LIpSChItZ boundarres
0Q,0Q; and let 'Q and Q¢ be their closures respectlvely Let us denote with

n(x) = (m (x ), (x).m, (x))" €R®,xe0Q the outward unit normal vector to 6Q in x € 9Q. Since Q has a
locally Lipschitz boundary, n (x) x € 0Q), exists almost everywhere similar statements hold for the outward
unit normal vector to 6QGv. Furthermore let Q be such that Q, # @ and QmQG =¢. We assume that
Qand Q. ‘are characterized by constant acoustic boundary impedances y >0 and yx; =0, respectively.
The case ¥ =+ and/or y; =+ (i.e.. the case of acoustically hard obstacles) can be treated with

simple modifications of the formulae presented here. We refer to (Q;. ;g) as the obstacle and to (QG; Zc)
as the ghost obstacle. We consider an acoustic incident wavevu"‘(;_g,t), @,t)eRWR, propagating in a
homogeneous isotropic medium in equilibrium at rest with no source terms present that satisfies the wave
equation with wave propagation velocity ¢ > 0 in R®* xR. - ‘ B

Finally we denote with u'(x,1), (x,t) e (R3 \ﬁ)x R and with %% (x,¢), (E,t)e (R3 \Qq )xR, the waves
scattered respectively by the obstacle (Q; ;() and by the ghost obstacle (QG; ;(G) when hit "by

u"(g,t‘), @,_t) evR3'>< R. :
The scattered acoustic field us(g,t), (g,t)e (R3 \ﬁ)x R is defin‘ed as the solution of the following exterior
problem for the wave equation: ‘ ’

du ) - Lt) 0, @)e® Q)R (1)

with the boundary condition':

+c X, t ‘

az(’) Za(_)() @
= glx;1) (x.1)e0QxR, |

where g(g,t) is given by:

slo)= (e -er os(s0) ()eoxm, )

the boundary condition at infinity:

u (_t) O[ jr—->+oo teR, o (4)
and the radiation condition:
—a*ui@:f)ﬂ“lﬁ@t)w[l), r >+l R, (5)
or c o r _

2

xe R3,A = Zi a—— is the Laplace operator, ¢ > 0 is the wave propagation veIocity and

where 7 =],
1 x2

‘O() and of-) are the Landau symbols. We note that g(x,1), (x,/)caQxR is defined almost everywhere and
“ that the boundary condition (2) can be adapted to deal with the limit case of the acoustlcally hard obstacles,
i.e. y =+00. The obstacle (Q,)() that scatters the field u* solution of (1), (2), (3), (4), (5) is called passive
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obstacle. The field ué (_J), (_)g,t)e (R3 \ﬁo )><R scattered by the (passive) ghost obstacle is defined as

the solution of (1), (2), (3), (4), (5) when in the problem defined above we replace Q yvith Q. and y with

X - Note that we always consider the ghost obstacle as a passive obstacle.

We consider the following problem: _
Ghost Obstacle Problem: Given an incoming acoustic field u (z,t), ()_c,t)e R’ xR, an obstacle (Q; ;(), a
ghost obstacle (QG;;(G) choose a pressure current circulating on 0Q for f € R in such a way that the

wave scattered by. (Q; ;() when hit by the incoming acoustic field u' appears, outside a given set containing
Qand Q ', “as similar as possible” to the wave scattered in the same circumstances by the ghost obstacle
(QG sXa ) S ’ ‘ ‘

Remember that a pressure current is a quantity whose physical dimension is: pressure divided by time.
Our goal is to model the ghost obstacle problem as an optimal control problem introducing a control variable

w(y_c,t), (g,t) € 0Qx R, that is a pressure current acting on the boundary of the obstacle. To this aim, we
replace the boundary condition (2) with the following boundary condition:

s

ou’ ou
_'a_t‘(&t)ﬂL 0755;1—(9(£>f)— g(laf)-l' ‘

n 6)
+(1+;() t//(gg,t),' (z,t)e 0QxR. .

Let Q. be a bounded simply connected open set cdntaining Q and Q with Lipschitz boundary 0Q, and
let a’.s*Qg,ds(;jQ be the surface measures on 0Q_ and 0Q2 respectively.
" We choose the following cost functional:

)= { [0 il ) @ o, - (7)

R 0,

+ [+ g (s, Mg }

where 1>0,2>0 are adimensional constants such that A+u=1, and ¢ is a nonzero positive

dimensional constant. We model the ghost obstacle problem via the following optimal control problem:

min(//eC Fi,,u,a (l//)’ (8) '
subject to the constraints (1), (4), (5) and (6). ‘
This is a legitimate mathematical model of the ghost obstacle problem. In fact the minimization FM,E makes

small u’ —ug, for (_)g,t)EIBQz «R, that is makes small u" —ug for (x,r)e(R*\Q,)xR and makes small the

“size” of the pressure current used while the constraints (1), (4), (5), (6) guarantee the satisfaction of the
dynamic conditions associated to the problem considered. '

The set C is the space of the admissible controls that we leave undetermined. The obstacle (Q,;g) that

generates the scattered field u® solution of (8), (1), (4), (5), (6) is called smart or active obstacle.
Note that in (7) the choice Q, < Q,Q_=€Q gives the masking problem and that the choice Q; =4

Q, =Q gives the furtivity problem.
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3. THE FIRST ORDER OPTIMALITY CONDITIONS

Let us make the following assumptions: let (r, g, ¢) be the usual spherical coordinéte system in R® with pole

in the origin, let B be the sphere with center the origin and radius one and let 6B be its boundary, we assume

that: : , . ‘

(@) the boundary of the obstacle Q is a starlike surface with respect to the origin, that is Q and 4Q can be
represented as follows: '

Q=f=rieR0<r<£(z)2eoB}, ()
0Q={x=rieR’r=£(8) 208}, (10)

where cf()_Ac)> 0,X € OB, is a single valued function defined on 8B that is assumed sufficiently regular
for the manipulations that follow; : '
(b) the sets Q_ and O, can be represented as follows:

QH={gzrieR3|0Sr<(§(§)+8),§e8B},a>O, (11)
_ 8Q; ={g=r§eR3|r=§(§)+8,266B},8>0- (12)

for a suitable choice of & > 0. ;

Note that the assumptions (a) and (b) are only one of many other possible choices of assumptions that can
be made to guarantee the satisfactory solution of the model (8), (1), (4), (5), (6). This choice is made just to
fix the ideas and to keep the exposition simple.’ ‘

Under the assumptions (a) and (b), applying the Pontryagin maximum principle the optimal state trajectory

#° and the corresponding adjoint variable trajectory @ satisfy the necessary first order optimality conditions

associated to the -optimal control problem (8), (1), (4), (5), (6), that is they are the solution of the following
exterior problem for a system of two coupled wave equations:

1 25 :
Aﬂs(z,t)_%%%’(&f)=0, (5,t)e(R3 \ﬁ)xR.‘ (13)
c
ﬁs(z,t):O(lj, r—>+ow0, teR, (14)
o

@—(J_c,t)+l§—u% x,t)=o[l], r—>+o0, te R (15)
or c ot r)

--a-g-ri@t% cz'gé—)(wF glx1)-

| —%5({,%),(§?t)66QxR- (16)
~ 1 0*¢ e s =)
A(et)-— S L (wr) =0, (x1)e R \Q)xR, (17)
c .
oy 1 ‘
go()_c,t)zO(—), r—>+4o, teR, (18)
v

: @(&,t)+l§g(z,t)=0(l), r—+o, teR:,  (19)
or c ot r

S n)-er )=
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’2‘“”"’ (e (o) leveyfJenesmne.

o (20)
,limﬁ‘(g,t)zo,geRﬂﬁ, @1)
lim P(x,1)=0,xeR*\Q, (22)

~ where f, (;/”g“),xe 0Q) is the function defined by:

i )-reon-2o9

ve.0)" T 4l 23)

0<0<70<¢<2r, '
T T
u(é,qﬁ)—f\/(aa) sin 0+(a¢)+§ sin”“ &,
(24)
050<7,0<¢p<2rm,
o¢ ‘ o&

US(H,¢)=(§+8)\/(£) sin ‘9_{645] +(¢+efsin®g,
0<0s7n0<¢<27. (25)

The relation between @ and the 6ptima| control i/ solution of problem (8), (1), (4), (5), (6) is the following
one:

. 1)= _—ia(y}, (x.6)e0QxR.  (26)

Let us point out that we have:
ds,, =0(0,4)d0dp,0 <0< 7,0<$ <27, (27)
and

dsy, =0,(0,$)d6dp0<O <0< ¢ <27 . (28)

4. NUMERICAL SOLUTION OF THE EXTERIOR PROBLEM (13) - (22)

Numerical methods to solve the exterior problem (13)-(22) have been developed in [5], [6]. These methods
belong to the class of the operator expansion methods and are highly parallelizable. Some numerical
experiments proving the validity of the control problem proposed as mathematical model of the ghost
obstacle problem are shown in.the website http://www.econ.univpm.it/recchionifw11. .
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5. THE INVERSE MASKING PROBLEM

Let us describe the data defining the direct masking problem. Let Q = R? and Q< R> be bounded simply
connected open sets with locally Lipschitz boundaries 0Q2,5Q s respectively and let Q,Qu  be their
closures. Let us denote with g(§)= (nl (gg), ny (5), N3 (5))T eR?, x € 0Q) the outward unit normal vector to

ﬁ, ﬁM. We assume that Q and Q;, are characterized by constant acoustic boundary impedances
Z,;(M;Q(ZO,ZM 20 respectively and that Q,, Q. We refer to the .couple (Q;;() as the smart
obstacle and to the couple (QM;;(M) as the mask. We assume that the origin of the coordinate system
belongs to €2,, .We assume that (Q,,qg) is a smart obstacle that pursues the goal of appeaﬁng as the mask

(QMSZM) and that the mask (QMSZM) is a passive obstacle. The behaviour of this smart obstacle can
be modelled as the solution of an optimal control problem that due to the fact that we consider only time

harmonic incoming acoustic fileds reduces to the optimization problem that follows. Since we deal with time ,

harmonic fields we formulate the problem us'ingfdirectly the Helmholtz equation without going through the
wave equation formulation. Given the incoming time harmonic acoustic wave #' the obstacle (Q;;(), the

mask (QM;,'};M), such that Q,, < Q, choose a pressure current circulating on  9Q in order to minimize
“a cost functional that measures the “magnitude” of the pressure current used and the “magnitude” of the
‘difference” between the wave scattered by the smart obstacle (Q; ;{) and the wave scattered by the mask

Q3727 ) when hitby '

The incoming wave u' is the spatial part of an incoming acoustic time harmonic plane wave, that is:

u'(x)=ul, ,(x)= @A x e RO (29)

where 1€ C is the imaginary unit, ¢ > 0is the wave propagation velocity, w/c = kis the wave number

and geR3.is an unit vector. The direction ¢ is the propagation direction of the incoming field. Let us

denote ‘with u(f) a (gc_) the (spatial part of the) acoustic field scattered by the obstacle (Q; )() when hit by v/

and with uj{)w’a()_c) the (spatial part of the) acoustic field scattered by the (QM;;(M)in the same
circumstances. , ‘ '
To model the smart obstacle we need to act on the boundary via a control variable that we assume to be
time harmonic and given by &(g,t):exp(— 20 t)gz/(g)eaQ,teR, that is, we replace the boundary
condition (6) with the following one: '

s au‘ix‘l (30)
1ol (0)+cr —75%(x)=(1+ 2 w(x)+b, (x) xeoQ,

o0 an@) ».a

where bm’a()_c) is the function analogous of g in (2) similarly the wave equation (1) must be substituted with
the Helmholtz equation for the space dependent part of the unknown scattered field and the boundary
conditions at infinity (4), (5) must be substituted with the Sommerfeld radiation condition at infinity. The
function {7 is a time harmonic pressure current, i.e. a quantity given by pressure divided by time, and its
space dependent part y appears in the boundary condition (30) satisfied by the scattered field generated by
the smart obstacle. Note that both ¢/ and 'y are in general complex valued functions, this is due to the fact
that we work in the time harmonic framework, so that the term “pressure current’ is somehow abused. We
determine the function that corresponds to the optimal reaction of the smart obstacle (Q; ;() as the solution
of the following problem:

minFy, , ; ., () 31)
weC
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subject to the approprlate constraints (i.e. the Helmoholtz equation and the boundary condition (30) and the
sommerfeld radiation condltlon at mfnlty) The cost functional Fy o4, 18 given by:

wa/m(l// _f dSaQ(x)(1+Z)

{09 0 o) w,w@"z}

Note that mlnlmlzmg the functional (32) corresponds to makmg small the control variable employed and the

difference uy, , —u},. o, ON OQ and as a consequence on R*\Q. This last fact :translates

.
mathematically the goal of the obstacle (Q, ;() that is the goal of (Q, ;() of appearmg as the mask
(QMJ(M) ,

Note that in the optimization problem (31), with the appropriate constraints ua, a depends on y through the

‘boundary condition' (30).
Reasoning as in [11] for the constrained ~optimization problem mentioned above we can write the first order
necessary optlmahty condition as the following auxiliary boundary value problem:

(Aui,g + b g J(;_c) =0,xeR\Q, (33

: 2 ‘ \ o |
(A(DWAQ + 2)—2(0(0,05}(&) =0,xe R3\Q, (34)
’ ou’
.lanz)a( )+c,{ ana(’x“) (£)+

) boalhreon, @9
2pg

: bo -

lw%,g(z)wza—:’(f)—(z%

#2214+ 2l (6) -1} 0 W)= 0,3 € 00,
(36)

with the following conditions at infinity:

o o
unals) o x)zo(lj, ro4,  @37)

or
op, (E) 3 1
Bt ) o o

- Let uma( ) (pma(_) xeR \Q be the solution of (33)- (38) The function Py, (_) geR3~\Q'

solution of (33)-(38) is an auxiliary function related to the optimal control. l//(_) = lﬁ(z), X € dQ solution of
(31), with the appropriate constraints by the following relation: :
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-1
X)=———0 o (x) x€0Q. (39)
()=~ 5ol

<

The function y is the space dependent part of the pressure current that must circulate on the boundary of
(Q; ;() to obtain the optimal masking effect, that is to obtain the effect that the field scattered by _(Q; ;()

resembles in R>\ Q) the field scattered by the mask (Q M ,}jM) as much as possible in the mathematical

model chosen. Now we can formulate the following mathematical model! for the direct masking problem:
Acoustic Time Harmonic Masking Direct Problem: given the acoustic incoming plane wave (29), the obstacle

(Q;Z), the mask (QMQZM) and the parameters A,u,¢, appearing in (32) find the scattered acoustic field

ug, a and the optimal control given by lﬁ(&) solution of (31) with the appropriate constraints or alternatively

find u solution of (33)-(38) and determine (/?(Q) from (39).

o, cx’goa) [24
The formulation of a time harmonic inverse problem for a smart obstacle (Q,;() ‘that pursues the goal of

appearing as the assigned mask (Q M ZM) is based on a first step that consists in the reconstruction of

the mask. Note that to reconstruct the mask we can solve numerically the time harmonic passive inverse
problem. Obviously the mask will be determined with an accuracy that depends on the ability of the smart
obstacle to mask itself, that is on the values of the parameters-A,u and ¢ appearing in (31).

The inverse masking problem can be translated into the following two steps:

Step 1: from the knowledge of the far fields associated to the acoustic fields scattered by the smart obstacle
when the optimal pressure current is employed for several incoming waves with- different incident

directions and/or wave numbers and of the acoustic boundary lmpedance X of the mask, determine
the boundary 6Q2,, of the mask;

- Step 2: from the knowledge of the mask (GQM;ZM) of the masking parameters A, u and ¢ and of the

acoustic boundary |mpedance X of the smart obstacle determlne the boundary 0Q of the smart
obstacle.
Step 1 is the usual inverse obstacle scattering problem for the Helmholtz equation and can be formulated as
an optimization problem as shown for example in [11]. An alternative way to approach the inverse masking
problem is contained in [12] where the so called Herglotz function method to solve inverse problems for the
Helmholtz equation is generalized to the problems involving smart obstacles.

The data of Step 2 are the mask (QM,;(M)and the parameters A,u and ¢ that define the cost functional

. (32) and the acoustic boundary impedance y, of the obstacle Q.
For simplicity in the following of this section we assume that the obstacle and the mask are acoustically soft

(e.x=x =0). |
~ First of all we note that when =0 from equations (30), (36) we can deduce the following equation: ‘

(2/74 +2ugw ) Up, a( ) 2/?“uM o, a(x)

(40)
—ww2ush, (g), x€0Q,

and that uM o, a( ) Xe 552 can be obtained from the results of Step 1 solving the direct scattering problem
for the passive obstacle (GQ M ZM)- Note that equation (40) satisfied on the boundary 0Q is a condition

on u;fw when 0C) is known or is a condition on €2 when ugw is known. Equation (40) is used in this last

sense when solving the inverse problem. In [11], [12] several numerical examples of solution of inverse
problems involving smart obstacles are presented. These examples are obtained applying the inverstion
procedures to synthetic data resulting from the numerical solution of the direct scattering problems. The
results shown in [11], [12] are encouraging and suggest that the problem of solving inverse problems
involving smart obstacles deserves further investigations.
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6.

EXTENSION AND CONCLUSIONS

The wbrk presented can be extended to a new class of smart obstacles that pursue the following goat:

4. one of the goals specified in the Introduction restricted to a definite band in the frequency space.

We can conclude that the idea of modelling the smart obstacles using optimal control problems or
constrained optimization problems is an interesting idea. Moreover the work developed until now with the
mode! proposed can be profitably extended in several directions such as the study of closed loop controls,
finite horizon controls, or the study of several inverse problems involving smart obstacles. These are
challenging mathematical questions whose solution can be very valuable in practical applications.
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