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1 INTRODUCTION

In active sonar, detection and classification of objects by their backscattered sonar signatures can be com-
plicated by propagation effects. For example, sound waves propagating in sea water undergo frequency-
dependent attenuation, as do sound waves penetrating the bottom sediment. The channel may also induce
dispersion, which can be especially significant in shallow water channels, whereby different frequencies prop-
agate at different velocities, resulting in temporal and spatial spreading of the wave - 13, These propagation
effects can cause the wave to change dramatically as it propagates. Accordingly, in such environments, dif-
ferent signatures do not necessarily reflect different objects/targets of interest, which can adversely impact
automatic classification.

Our aim in this paper is to consider propagation-invariant classification, and in particular the extraction of
features from the backscattered wave that are invariant to particular channel effects. We present a feature
extraction process to obtain moment-like features of the wave that are invariant, per mode, to dispersion and
exponential or power-law damping. Environmental knowledge is not needed, beyond knowing the general form
of the damping, which is usually media-dependent and hence typically known. Simulations of classification of
steel shells in channels with dispersion and damping demonstrate the utility of these features. The features
are also robust against random variations in sound speed and damping.

2 BACKGROUND

21 Linear wave propagation

We give here a brief background on the normal mode solution for linear wave propagation ™13, We also review
ordinary moments, and our previously developed dispersion-invariant moment features 58 . In the following
section, we then consider moment features that are invariant to both dispersion and damping.

Given an initial wave u(0, t) generated at position z = 0, the propagated wave is given by 1113

u(z,t) = \/%_W/F(O,w) KW g=jut gy — \/%_W/F(z,w) eIt duw (1)

per mode, where K (w) is the dispersion relation expressed in terms of wavenumber k as a function of radial
frequency w and F(0,w) is the spectrum of the initial pulse,

F(0,w) = \/%r / u(0,) &t dt @
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(For simplicity, we consider a single spatial dimension x, which denotes range.) The dispersion relation can be
either purely real or complex. If the dispersion relation is complex, then there is damping, resulting in frequency-
dependent attenuation as the wave propagates. Propagation without dispersion or damping is characterized
by K(w) = w/ec.

Wiriting the dispersion relation explicitly in terms of its real and imaginary parts,

K(w) = Kp(w) +j Ks(w) 3

and noting from (1) that F(z,w) = F(0,w)e’K®=, it follows that the spectrum of the wave can be written in
terms of amplitude and phase as

F(z,w) = Blzw)e?@) (4)
where

B(z,w) = B(0,w)e KW= (5)

P(z,w) = YOw)+ Ko (w)s (6)

and where B(0,w) and (0, w) are the spectral amplitude and phase, respectively, of the initial wave u(0,t).

2.2 Ordinary and Dispersion-Invariant Moments
If there is dispersion but no damping (Ki(w) = 0), then spectral moments may be useful features for classifica-
tion, since they do not change, per mode, with propagation distance z:

Wl = [urlF@altds = [o PO WP = @ @

However, temporal moments, such as the duration of the wave, do change with propagation distance ina
dispersive channel, and hence are not “propagation-invariant” features for classification.
Time-domain moment-like features that are invariant to dispersion can be defined; these are given by 8

4) = [PEo) (12 -tew) Fawi ®
where t,(z,w) = —1'(z,w) is the group delay of the wave. These moments are similar to central temporal
moments,

(=@ = [u@t) - 0" vz na ©

/ F(a,w) (j% - (t)m>nF(z,w) dw (10)

but with an important difference: rather than being centered about the average time (t), the “dispersion-
invariant moments” defined by (8) are centered about the group delay t,(z,w) of the wave. This centering
about the group delay renders these moments independent of z," %

An(z) = 4,(0) (1)

per mode, for real dispersion relations (i.e., propagation without damping). Accordingly these moments, like
spectral moments, can serve as propagation-invariant features for classification of waves propagating in dis-
persive channels. However, when there is damping in addition to dispersion, these time-domain moment-like
features will in fact change with propagation distance, as will the spectral moments (w™),. In the next section,
we consider features that are invariant to both frequency-dependent attenuation and dispersion.
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3 MOMENTS INVARIANT TO DISPERSION AND DAMPING

We consider power-law damping, wherein the attenuation (in dB) increases linearly with log-frequency, and
exponential damping, wherein the attenuation (in dB) increases linearly with frequency, and give the signal
processing to obtain features invariant to these damping effects, as well as dispersion (for any dispersion
relation K,.(w)).

3.1 Power-law damping

Consider damping given by
B(z,w) = BO,w)w™,  p>0, (12)

which corresponds to complex dispersion with K;(w) = p log (w), and results in frequency-dependent atten-
uation (in dB) that is linear with log-frequency. In order to extract features that are invariant to this damping,
we propose the following feature extraction process. We first take the derivative of the natural logarithm of the
spectral envelope,

0 _ B'(0w) pz
Z(w,w)_ézlnB(z,w)m B0 w (18)
In order to eliminate the frequency-dependence of the attenuation, we now multiply by w, to obtain
_, B 0w
wZ(z,w) —wB(wa) pT (14)

The shape of the function wZ(x, w) does not change with propagation distance z, it is merely shifted in overall
level by pz. By normalizing the mean of the function to zero, we eliminate the level shift. The feature function
Zo(z,w) is defined as

Zo(z,w) = wZ(z,w) — mean {wZ(z,w)} - (15)
where mean{.} denotes the mean over frequency w.

Accordingly, the spectral function Zo(z,w) depends only on the initial wave u(0,t) and does not vary with
propagation distance. Hence, features extracted from Zy(z, w) are, by design, independent of the propagation
channel (specifically, dispersion and damping), and may serve as features to distinguish between different initial
waves arising from different objects. To obtain time-domain features, we exponentiate Zo(z,w) and transform
back to the time domain to obtain the augmented wave,

v(z,t) = \/—;_7; /exp (Zo(z,w)) e duw (16)

Like the function Zo(z,w), the augmented wave v(z, t) is unaffected by dispersion and damping, and depends
only on the initial wave u(0, ¢). Time-domain moment features are computed by

T(a) = /t” ol 8)|2 dt (17)

We call the temporal moments extracted from v(z, t) attenuation and dispersion-invariant moments (ADIMs).
This feature extraction processing is illustrated in Fig. 1.

3.2 Exponential damping
Exponential frequency-dependent attenuation may be modeled as
B(z,w) = B(0,w) e~ (18)

which corresponds to K; (w) = fw.
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Figure 1: Procedure for computing attenuation-and-dispersion-invariant moments for power-law damp-
ing.

In order to extract features that are invariant to exponential damping, a process similar to that given in the
previous section is used. Taking the derivative of the logarithm of the spectral envelope, we have

) 0 _ B'(z,w) B (0w
Z(z,w) = %InB(x,w) = Blw  Bw

- Ba. (19)

Observe that the spectral shape of Z(z,w) does not change with propagation distance, but is merely shifted
in overall level by Az. As in the previous section, this propagation-dependent level shift may be eliminated by
normalizing the mean of the function to zero,

Zo(z,w) = Z(z,w) — mean {Z(z,w)} (20)

and then proceed as in Egs. (16) and (17) above to obtain the temporal ADIM features. This feature extraction
processing is illustrated in Fig. 2.

Figure 2: Procedure for computing attenuation-and-dispersion-invariant moments for exponential
damping.

4 SIMULATIONS

This section describes classification simulations conducted to compare the performance of the ADIMs to that
of moments invariant to dispersion only (DIMs), and to ordinary central temporal moments (MOMs), which are
not invariant to either dispersion or attenuation. The simulations were conducted using numerical methods to
compute the sonar backscatter from air-filled steel shells in water and the subsequent propagation of the wave
through a dispersive channel model with damping (Fig. 3). Random variations in channel parameters were
also investigated.

Resonance scattering theory (RST) was used to formulate the sonar backscatter for two air-filled steel shells
in water, one sphere and one cylinder. 2% 12 The number of modes used to construct the sonar backscatter
for each shell was five; including higher modes did not appreciably change the waveform generated (we in-
vestigated up to 50 modes). The density and sound speed properties of the materials # are given in Table
1.
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Air-filled Calculate features of the propagating
slainless/ steel shell wave at multiple distances

T

x=0

Figure 3: Schematic overview of simulations.

Table 1: Physical parameters used in simulations

Water | Air Steel
Density 100024 | 125 780014

Speed of Sound Waves | 15007 3407 | 588072 (dilatational), 314072 (shear)

The goal was to distinguish between the sphere and cylinder using the moment features extracted from the
propagated echoes. The shells were insonified by an impulsive interrogating waveform, and the backscattered
pressure obtained via RST was used as the initial waveform u (0, ¢) in the channel at position z = 0. This initial
backscattered wave was then propagated to several distances in a channel model with dispersion relation

k=K (w) = Ky (w) + jK;i () (21)
where
p 2
Ko) = Ly ue - (W) 22)

is the dispersion relation for a two-plate waveguide ', and K; (w), the damping term, is either power-law or
exponential. .

In the above equations, « is the horizontal wavenumber [rad/m], w is the frequency [rad/s], ¢ is the sound
speed in the medium [m/s], m is the propagating mode number of the waveguide, and D is the plate separation
(depth of the channel [meters]). The waveform at any distance z is given by Eq. (1). Note that mode separation
is implicit in our simulations, as we consider only the first propagated mode in the channel (m = 1in Eq. (22)).
Also note that the two-plailte channel model implicitly has a low-frequency cut-off, since K, becomes purely
imaginary when w < thg—)m. Hence, frequencies below this value do not propagate in the model.

The classification features extracted from each simulated propagated echo were ordinary central temporal
moments given in Eq. (9) for n = 2,3, the corresponding DIMs given in Eq. (8), and the corresponding
ADIMs given by the procedures discussed in Sections 3.1 and 3.2. All moments were normalized by the
respective zero-order moment so that differences in signal energy between the classes would not contribute
to classification performance. Receiver operating characteristic (ROC) curves were generated in order to
compare classification performance of the features. .
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The geometry of the shells (i.e. size and thickness) were chosen to be realistic for underwater shells that
might be encountered, and to be sufficiently distinguishable from the initial backscatter prior to propagation
through the simulated channel. The inner and outer radii of the sphere and cylinder are given in Table 2.

Table 2: Geometry of shells used in simulations
Inner Radius (m) | Outer Radius (m)

Sphere 0.90 1.00

Cylinder 1.38 1.40

For the simulations reported here, the depth of the channel (D) was fixed at 50 meters, with isovelocity
water sound speed of ¢ = 1500 m/s (mean sound speed for the case of the random channel simulations
presented). Feature values were calculated at 5 meter increments starting at + = 5 meters, up to a maximum
range of 5 kilometers. A feature vector for each moment was calculated for each shell, resulting in 12 total
feature vectors. The feature values were calculated from the first propagating mode in the waveguide (m = 1).
The sampling frequency was fixed at 10 kHz, and an anti-aliasing filter was applied to limit the bandwidth of
the backscattered echoes to 5 kHz.

We first examine the case of power-law damping, which implies a dispersion relation as given in Eq. (21)
with

Ki(w) = plog (w). (23)

For this simulation, p = 5 x 10~°. Simulated waveforms and corresponding spectrograms are shown in Figs.
4 and 5. At 2 = 5 meters (Fig. 4), the spectrograms show that most of the energy in the backscattered
waveforms is concentrated in the specular impulse. As the wave propagates further through the channel (Fig.
5), the lower frequencies are increasingly delayed with respect to the higher frequencies, while the energy at
higher frequencies is moderately attenuated relative to the lower frequencies.

Sphere Backscatter at5 m Gylinder Backscatter al 5 m

Frequency (Hz)

o
Time ()

(a)

Figure 4: Spectrograms (main color panels) of backscattered echoes propagating in a channel with
dispersion and damping, from the (a) sphere and (b) cylinder at + = 5 meters for power-law damping
with p = 107°. The waveform is shown along the bottom of each plot, and the left panel in each plot
shows the (log) spectrum.

The classification results of this simulation (» = 10~°) are presented in Fig. 6. For n = 2 and n = 3, the
ADIMs achieve perfect classification, while the DIMs and MOMSs show significantly less classification utility.
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Figure 5: Spectrograms of backscattered echoes from the (a) sphere and (b) cylinder at - = 5000 meters
for power-law damping with p = 10-5.
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Figure 6: ROC curves showing classification utility of ordinary temporal moments (MOM), dispersion-
invariant moments (DIM), and attenuation-and-dispersion-invariant moments (ADIM) for (a) second-
order moments (n = 2) and (b) third-order moments (n = 3), in a dispersive channel with power-law
damping, p = 107°.

We next examine the classification performance of the features in a random dispersive channel with expo-
nential damping. The dispersion relation is given by Eq. (21) with

K; (w) = fuw. (24)

For this simulation, two parameters governing propagation are made to be random variables, that is, at each
distance a new realization is drawn and the wave at that point is calculated. The isovelocity sound speed (c)is
modeled as a Gaussian random variable with mean 1500 and standard deviation 10. The attenuation factor (/3)
is modeled as an exponential random variable with rate parameter \ = 10%, corresponding to a mean equal to
10~® and standard deviation also equal to 105, The classification results of this simulation are presented in
Fig. 7. The ADIMs display significantly better classification utility than the DIMs or MOMs.
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Classification Performance, n=2 Classification Performance, n=3
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Figure 7: ROC curves showing classification utility of ordinary temporal moments (MOM), dispersion-
invariant moments (DIM), and attenuation-and-dispersion-invariant moments (ADIM) for (a) second-
order moments (n = 2) and (b) third-order moments (» = 3), in a random dispersive channel with
exponential damping.

5 CONCLUSION

A propagating sonar signal can undergo frequency-dependent propagation effects such as dispersion and
damping, which can be especially significant in shallow water channels. These effects are detrimental to
classification performance, because differences between received echoes may reflect propagation effects
rather than two different sources (targets). We presented feature extraction processing algorithms aimed
at achieving propagation-invariant classification of sonar echoes in channels with dispersion and damping.
Simulations were performed to examine the classification utility of the “attenuation and dispersion invariant
moment” (ADIM) features, compared to ordinary central temporal moments, as well as our previously-defined
dispersion-invariant moments. Random variations in channel properties were also investigated via simulations.
The results demonstrated the superior classification utility of the ADIMs compared to the other features. Mode
separation was implicit in our simulations, and is necessary in general to achieve the invariant classification
performance of the ADIMs. While performance of the ADIMs (as well as that of ordinary moments) will degrade
in the presence of multiple channel modes, preliminary investigations suggest that the ADIMs still have greater
classification utility than ordinary moments; further research into this issue is ongoing.
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