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ABSTRACT

Previous research (egt Cawley [1, 2]) has demonstrated that artificial neural networks can be trained
to generate the speech sounds corresponding to a sequence of phonetic tokens, including the effects of
coarticulation required to produce natural sounding synthetic speech. The principal limiting factor in the
performance of neural speech synthesizers has been found to lie in the amount of training data available.
This paper presents the initial results of an investigation to determine the amount of training data required
to reach optimal generalization in neural speech synthesizers, through an empirical exploration of the effects
of the number of training patterns on test set error.

1. INTRODUCTION

Speech is produced as the result of a coordinated sequence of movements of the articulators, such as the lips,

tongue and jaw. For a given language, there exists a set of elementary linguistic units, known as phonemes
The elementary acoustic unit of speech is the allaphone, a symbolic representation of a number of subtly
different speech sounds corresponding to a g'ven phoneme. For example, the light 1 in “lemur” and the
dark, or syllabic l in "so " are both allophones oi the phoneme l. The acoustic realization of an allophone
in continuous human speech, referred to as a plume, varies greatly according to phonetic context. This is
partly due to the physical inertia of the articulators themselves. and partly due to cognitive processes that
seek to minimize the articulatory efiort required to achieve error free communication. The sources of these
variations aredescribed by three terms:

- Assimilation is the process by which an allophone partially acquirm the acoustic properties of
adjacent speech sounds, to prevent the undue vocal effort required to articulate each sound distinctly.

- Reduction occurs when the principal articulator is unable to move with sufl-‘icient speed, without
undue articulatory efl'ort, and so undershoots its target position.

0 Coal-ticulntion describes the simultaneous movement of two, or more, articulatorsi This word is
also used as a blanket term to describe the general merging of speech sounds in continuous human
speech.
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While coarticulation is often assumed to be local to the immediate phonetic context, in some cases the

effects can extend much further. For example in the phrasc “the toucan", the lip rounding gesture required
to produce the initial vowel sound in "toucam" can even cross a word boundary to occur duringthe

articulation of the word “the”. Coarticulatory effects carry little of the semantic meaning of an utterance.

However, the human auditory system has adapted to expect these variations to be present in natural

speech. As a result, synthetic speech where this variation is absent or inadequately modelled sounds stilted

and unnatural. There are two basic approaches to spccch synthesis, concatenative synthesis and synthesis

by ruleI that adopt different models to account for the efi'ects of ooarticulation.

1.1 Concatenative Speech Synthesis

Concatenative speech synthesis systems simply concatenate short, pre-recorded speech sounds to form

the required utterance. The most frequently used speech unit is the diphone. consisting of the second

half of an allophone and the first half of the subsequent allophone. The diphone captures the effects of

coarticulation in the transition between the two aliophones, and abut during the relatively steady state

conditions in the middle of each allophone, so that the joins between diphones are less noticeable. Modern

concatenative synthesizers, for instance B.T.’s Laureate system (Page and Breen [3]), often incorporate

time domain algorithms to smooth the boundaries between diphones and to modify the duration and pitch

of each allophone to model prosodic efiects (e.g. Moulines and Charpentier {4}). Adding a new voice

to a concatenative synthesizer requires a phonetically transcribed speech corpus. of sufficient size and

diversity to form an adequate inventory of diphones. The phonetic transcription process has normally been

performed manually. However, completely automated training of concatenative synthesizers may soon be

practical, due to advances in automatic alignment techniques

1.2 Speech Synthesis by Rule
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Figure 1: Second formant transition for the sequence we. using the Holmes-MattinglyShearme algorithm,

After Holmes

Speech synthesis by rule systems incorporate a model of warticulation based on the interpolation of formant

parameters, according to a fixed template, for arample the HolmesMattingly-Shearme (HMS) algorithm

(Holmes et at. [6]) employed in the Joint Speech Research Unit (JSRU) synthaizer (Lewis [7]), as shown
in figure 1. Tables are compiled containing interpolation parameters {or each speech parameter, for each

allophonc, A large set of context sensitive rules may also be necessary to achieve acceptable speech

quality. The compilation of tabulated interpolation parameters and rule base involves extensive manual

comparison of human and synthetic speech spectral As a result rewiring a speech synthesis by rule system

is an expensive operation
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1.3 Neural Speech Synthesis
As coarticulation is largely the result of the physical and cognitive processes, it seems sensible to suggest
that the speed: sounds associated with a given allophone will vary withphonetic and prosodic context in a
systematic, generalizable manner. The artificial neural network has been demonstrated to have the ability
to generalize knowledge extracted from a set of representative examples. The use of neural networks in
speech synthesis has been investigated independently by a number of researchers (e.g. Cawley [2]. Thur]; at
al. [8, 9], Scordilis and Gowdy [10] and Karaali er al. [11]). It is hoped that neural models of coarticulation
can be trained without the extensive manual efl'ort required to voice a synthesis by rule system, but without
incurring the high storage requirements of concatenative synthesizers.

the remainder of this paper is organized as follows: Section 2. describes the implementation of neural
speech synthesizers and describes the method used to estimate the amount of training data required to
reach optimal generalization. Section 3. presents initial rults obtained for a single allophone h, and
section 4. concludes.

2. METHOD

Figure 2 shows the basic neural architecture employed in this research. The input layer of the network
contains three groups of neurons representing the current and left and right contact allophones, according
to a vector of articulatory and prosodic features. The input layer forms a “sliding window", similar to
that used in the Net ’l‘alk system {Sejnowski and Rosenberg [12]), over a stream of phonetic symbols
corresponding to the desired utterance. The phonetic symbols move from left to right across the window,
at each step the network generates an appropriate sequence of speech parameters to synthesize the current
allophone, including the effects of coarticulation consistent with the immediate phonetic context. In order
to generate the sequence of speech parameters, first the appropriate pattern of activation is applied to
the three groups of neurons corresponding to the current and context allophones. A continuous value,
representing the normalized duration of the current allophone is applied to the allophone duration input
neuron, and a ramp input applied to the time index neuron. The network is trained so that as the input
to the time index neuron steadily increases, the output units trace out the appropriate sequence of speech
parameters. A discussion of the interpolation properties of these networks can be found in Cawley [2].

The most direct method to determine the optimal size of the training set, and the approach adopted here,
is simply to train a large number of neural speech synthesizers with training sets of difierent sizes and to
record the minimum root-meanAsquare error over a test data set achieved by each network. A scatter plot
of the resulting data, against the size of the training set could be expected to have an exponential decay
characteristic, as shown in figure 3. Clearly a network trained with a very small data set is unlikely to
generalize well as the training set is unlikely to provide adequate coverage of the sounds corresponding to
an allophonc in a range of different phonetic contexts. The rate at which the generalization error is reduced
will [all as training set grows in size. This is because a new pattern introduced into a large data set is less
likely to be different to an existing pattern than for a new pattern introduced to a small data set. This

suggests an exponential decay in test set error as the size of the training set increases .

If the exponential curve exhibits significant downward slope for networks trained on large data sets this
suggests that the data set is too small, and a useful improvement in test set error might rult if more

training patterns were available. Conversely if the exponential curve rapidly becomes near horizontal, the
neural network generalizes well given only a small sample of the available data, and so the data set too
large in the sense that unnecessary effort was expended in its collection. Ideally the curve should display
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Figure 2: Basic neural architecture employed in this research.

steady reduction in test set error, leveling off only as the proportion of patterns used to form the training

set approaches 90%. This would imply that the neural network is able to extract all of the generalizable

information from the training set, but that adding further training patterns would have little efiect on the

lefit set error.

3. RESULTS

A pitch synchronous, twelfth order line spectral pair analysis (Sugamura and Itakura [13]) was first per-

formed on a corpus of some 230 phonetically balanced sentences (approximately 10000 phonemes) of English

speech, spoken by a male speaker with a received pronunciation accent. The resulting data were then par-

titioned to form a data set representing each allophone. A separate neural network was then trained on

each data set. Previous experiments indicated a hidden layer of 16 neurons to be more than sufficient for

networks trained on 90% of the data, larger numbers of hidden units providing only aminimal improvement

in test set error. One hundred trials were performed for read: data set, using between 10% and 90% of

the available patterns to form the training set. In each case, the remaining patterns were used to form a

test set. It should be noted that if the training set is large, fewer patterns will be left to form the test

set. This implies that the measure of generalization will be much less reliable for networks trained using

large training sets. A small data set may not be sufficiently large to be statistically representative of the

underlying distribution and will also he sensitive to outliers nr artifacts introduced by the random partition

of the data between test and training sets. We should therefore expect to see much greater variance in the

test set error for networks trained with large training sets than those trained with small training sets (and

therefore a more substantial test set).

The neural networks were trained using an implementation of the back propagation algorithm (Rumelhart

et a1. [14]), written in the C programming language using the Parallel Virtual Machine (PVM) package [15],

running in parallel on a network of 10 Linux workstations. Figure 4 shows a scatter plot of root-mean-

square test set error for a neural network trained to produce the allophone h in different phonetic contexts,

trained using between 10% and 90% of the 163 examples of this phoneme contained in the speech corpus.
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Figure 3: Expected exponential decay characteristic for scatter plots of root-mean-square error over the
test set against the proportion of the available patterns used to form the training set.

A model of the observed exponential reduction in test set error with increasing size of the training set is
also shown, A model of the form

y=A+BeC‘

is used, where and A, B, and C are constants found using a least squares optimisation procedure. Table 1
shows the coefficients obtained for the allophone h. The expected uponential decay characteristic of the

scatter plot is clearly evident. It can be seen that the slope of the graph still decrermes significantly for
large training sets, suggesting that while the corpus used approach the optimal size fora neural network
with 16 hidden layer units, a larger corpus may yield an improvement in generalization. As expected, the
variability of the test set error when large training sets are used (80—90% of the available patterns) is very
high, as fewer patterns are available to form the test set.

00895844

0.0563094

 

0.0305952

Table 1: Coefficients obtained for an exponential model of test set error against the proportion of patterns
used to form the training set for the allophone h,

4. CONCLUSIONS AND FURTHER WORK

At the time of writing only results for a single allophone (h) are available. These results suggest, for at
least this allophone, that while the corpus used in this research is sufficient to obtain meaningful results,
neural speech synthesis systems may benefit from a somewhat larger speech database. It should be noted
that tho rnulti-layer perceptrons used in this research contained a hidden layer consisting of a relatively
small number of units. Clearly in order to reliably estimate the amount of generalizable information that
can be extracted from the corpus, either a very large hidden layer in conjunction with regularization, or a
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Figure 4: Scatter plot of test set rout-mean-square error against the proportion of available patterns used

to form the training set, for the alloplrone h. i

constructive training algorithm, should be used, to ensure that hidden layer size is not a limiting factor in

minimizing test set error,
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