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l. INTRODUCHON

Auditory models have been tested as tront-ends lor speech recognition systems, but typically do not

Improve recognition significantly compared to conventional systems. The key problem in interlacing

auditory lront—ends to recognition systems is the high data rate these models generate. A common

solution is to down-sample the data generated by the models (e.g. Alnsworlh and Meyer. 1994). This

process. while making the tront-ends compatible with the pattern matching stages. removes all tine detail

lrom the' representation. Psychophyslcal data suggests that it is precisely this tlne detail. which is used by

human listeners to deal with situations where conventional recognition systems lall. An area, which

received particular attention Is the recognition ol vowels in a background at a second vowel.

Experimental data shows that human listeners use two main cues to segregate simultaneously presented

vowels: One cue Is the lundamental irequency dillerence (AF; between the two vowels (Assmann and

Summerlield. 1990; Berthommler and Meyer. 1995). the other is the relative onset time at the two vowels

(McKeown and Pattemson. 1995). The aim of this work is to investigate the utility oi signal

representations. which expand conventional signal representations along the axis oi perceptually relevant

cues. Model pet‘lormance on a vowel-vowel recognition task ls compared with human performance.

2. GHOUFING BY FUNDAMENTAL FREQUENCY

Human recognition parlorrnance tor pairs at simultaneous vowels improves as the lundamantal _

lraouencles (F.) at the two vowels diverge trom each other. it lollows that there must besome internal

representation or mechanism Which segregates them. A number oi models pedonning this segregation

computationally have beenproposed. The most direct solution is to employ a ‘harrnonlc selection'

strategy. A typical example is proposed by Parsons (1976). Fourier transtorms are applied to 512ms

windows ol the waveform. the fundamental lrequencies In the signal are estimated and harmonics

belonging to each of the estimates are extracted. This strategy has two Imponant draw-backs: hamtonic

selection requires very precise pitch estlrrratlon to recover high lrequency harmonics. It also does not

explain human perlorr'nance because auditory filters do not resolve harmonics in the speech pitch range

above about tkl-lz While auditory litters are not selective enough to resolve single harmonia In the

lrequency domain. precise intonnatlon about the signal ls represented In the time domain for each

interbank channel.
A number oi ezdsting models use autooorrelation analysis oi the temporal discharge pattern to explain

human per-tormance (e.g. Welntralrb. 1956: Assmann and Summertield. 1990 - 'place-tlme rnodel';

Maddie and Hewitt. 1992). Autocorrelatlon models extract energy at given periodldtles across all channels

or select channels according to dominance of e panlcuiar F. in a given channel. Both strategies dlstort the

signal and are sensitive to relative level diiierences.

A robust altematlve to the time4ag representation to to perform a lrequency decomposition ol the

discharge paltam In each channel. This type oi representation. nrodulatlon lrequency against channel

irequency. has been shown physiologically at the level at the interior collleulus (Schreiner and Langner,

1985; Langner and Schrelner. 1983).
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2.1 Experiment 1: Human Pertormance ior F. guided vowel segregation

The experiment Is a repetition oi earlier experiments by Assmann end Summerfreid (1990). Subjects are
presented with pairs oi synthetic long English vowels /a,3. I. 0. at The synthesiser and parameters are
the same as In Assmann and Summerliald (1990). Each stimulus consists or two dillerent vowels with
Identical n'ns energy. one with a F, at 100Hz. the other w‘nh a F, ranging from 100 to 200Hz. only a subset
'ol the data is shown. Both components at the pair start and and simultaneously and have a duration ol
ZOOme with 25ms Hanning windows at the start and end. The sublect's task was to identity the vowel pair.
Signals are presented dlchoticaily at around 50dB(A) using a 16bit D/A converter and Sennheiser HD435
headphones.
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Figure 1: Human performance (or the double vowel recognition Eek

Without any segregation cues subjects recognise around 50% oi the pairs correctly. As the F, dillerence
rises. penurmanoe increases to 70% One vowel In the pair le recognised in 95% or the trials. The date is
consistent with previous experiments. where similar perlon'nance increases were lound for Dutch
(Schellers. 1933). German (Zwicker. 1984). English (Assmann and Summerlield. 1990) and French
listeners (Mayer and Benhommier. 1996). ‘

2.1 The Model

The discharge patient in each channel at an auditory filtemank codes both the average energy In the
channel (as average discharge rate) and line timing inlonnation (es the discharge pattern) (reviews:
Evans. 1978; Langner, 1992). To illustrate the point the response to a complex stimulus consisting at two
amplitude modulated tones is shown in fig. 2. Each tone consists oi a carrier irequency. 1kHz andam: in
this example, which Is 100% amplitude modulated with an envelope at 100Hz and 142Hz respectively. A
DFI' oi the signal is shown in the Ieltmost panel. Each 01 the tones activates a dillerent place of the
auditory model. Channels with centre lrequenciea ol 1.05kHz and 2kHz show the highest average activity.
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right panel. The discharge pattern, middle, shows both the carrier and envelope of the stimulus clearly as
.a lunctlon ot time. As both tones activate ditterenl regions in the iiiterbank. they could be separated by

groupingchanneis or activity within channels into separate streams. which would be perceived separately.
This Is the basis oi F, guided stream segregation.

Nerve Representation Amplitude Modulation Map
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Figure 2a: Signal representation In an auditory Figure 2b: Amplitude modulation map, constructed

model for two 100% amplitude modulated Sines. by applying a DFT to 204.8ms windows of the

The carrier Irequencles are lkHz and 2id-lz. Interbank ouowt. 'i'hemapahows Mac/ear peaks,

modulated at 100Hz and 142Hz respectively. A corresponding to the carrier and modulation

DFT of the stimulus is given on the ieit. the frequencies orthetwoslgna/ components. Streams

temporal discharge pattern in a bank of filters In can be extracted by sampling the map along the

the centre panel and the average ach‘vliy in the modulation frequency axis. The recovered spectra

filterbank on the right. Note that the filterbenk ls (Iatt root-12. right 142Hz) correspond to the

unable to resolve the hamnlcs. components a! the perceptual streams.

Auditory Preproceselng

The first stage In the Inlorrnation processing Is an auditory filterbank. The signal is split Into 32 0.5 Bark .

spaced channels with characteristics trequencies ranging trom mom to 4.7km. t-‘Jch litter is a linear

fourth-order recursive gamma-tone tiller (Darling. 1991; Kortekaes and Meyer. 1994). The output 01 each

channel ls scaled to approximate human hearing thresholds. The hearing thresholds are calculated tor

each channel from a polynomial regression model tor data reported in Fay (wear.

As shown In figure 2a. the discharge patient in auditory filierbanks codes both the center trequenc/ and

the envelope oi amplitude modulated signals. The envelopes are emoted by hall-wave rectification and

low-pass tllterlng (Earns) ot the output at each tiller. This process is analogous to that seen at the hair-

ceil transduction stage. Modulation lrequencles are computed by Fourier translormlng a window at activity

In each nerve channel. The resultant map lot 32 channels Is shown In llgure 2b - centre panel. To remove

any Dc component and low trequency beating a high pass liiter with a time constant at 4ms is applied.

' The equation reeds: Ti. = 4.053.“ + 17.47 - 45.23.c,+ 45.76.¢.'- tease: + 4.1 11:,‘- 0.41;; + o.oz.c.'. Where c.
denotes the channel centre frequency in kHz and TH, Is the absolute hearing threshold in dB SPL.
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The map shows energy in the modulation spectrum against modulation irequency ior each at 82 channels

In the auditory model. Carrier and envelope irequency ior each object In the scene can be read oil the two

axes. Spectra tor Isolated tones can be recovered by sampling the map along target F,. The spectra
recovered In this way are shown to the left (tOOHz) and right (142Hz) oi the map. iigure 2b.

Speech sounds have many characteristics of simple amplitude modulated sine waves. Each of the

harmonics ls modulated try an envelope. which is directly related to the tundarnentel irequency. it a
voiced speech sound is used to drive the model. a characteristic striped pattern appears.

Why AM-maps?

Amplitude modulation maps expand the undertylng place representation in the ireguency domain which Is

the perceptually relevant domain. The representation In the maps to iuliy separated along a 'hanncnlclt)’

axis Sounds. such as voiced speech, which comaln multiple harmonictties have to be 'ooiiected together‘

to recover their spectra. This can he achieved by estimating the iundamanlai frequencies oi the signals to

be extracted. Energy Is recovered across all channels In the filterbank representation. so that it Is

sutiicient to recover only the spectra corresponding to the live initial harmonics. The recoveredspectra

have the same trequency resolution as the interbank.

2.2 Modelling Human Performance

The stimuli that were used In the psychophyslcel experiments were also used as the basis to a modelling

study. The segregation stage was used to drive a pattern matching stage. Spectre are recovered by
ilnearty interpolating the energy at the known target F° tor the tire! five partial spectra In the map.

Model Perion'nence
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Figure 3: Model performance for the double vowel recognition task the modal falls of both vowels have

the same F, Performance increases with AF, Alter one semi-tone the model recognises 90% or all vowel
pairs correctly. '
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A simple Euclidean distance metric between the recovered spectrum and a template generated by
averaging the recovered spectra for Isolated vowels with ng ranging between 100 and ZOOHz was used.
The proposed pattern matching stage could without doubt be refined. but theobjective Is to mimic human
performance qualitatively. not to implement a speech recogniser.

The set of stimuli consisted of non-identical pairs of six vowels. leading to 15 possible combinations. and
a chance level of performance of 6.67%. The F. guided segregation stage fails when both vowels have
the same fundamental frequency because the recovery algorithm extracts the same data twice leading to
the same recognised vowel. Subleets in this situation recognise around 50% of all vowel pairs correctly.
As the AF, between the two vowels increases. recognition pertorrnanoe increases to 90%. This level of
performance is significantly higher than that achieved by human listeners. but shows the same qualitative
behaviour. a minimum ol one semi-lane F.I difference is required to segregate the vowels. Larger
diflerencee‘are required If the window also used for analysis is reduced. as this reduces the frequency
resolution of the frequency analysis.

A number of factors may account for the fact that the model. while showing the correct qualltetlw data
performs significantly better than human listeners. The most obvious explanation Is that the machine only

‘knows' about five different vowels while humans are adapted to deal with a much broader range of
signals. Performance of the model could be reduced by shortening the window size. thereby reducing
frequency resolution In the AM domain. addition of noise to the representation. or a redudion In the

number of filterbanlr channels While little is known about human signal processing or pattern matching

strategies. it Is difficult to justify any of these steps.

3. VOWEL SEGHEATION 8‘! COMMON FATE

in experiment '1 all vowels stan-and and together. Another strong one used by human listeners to

segregate simultaneous vowels is known as 'common iate‘. As soon as one of the vowels precedesthe

other. the second vowel ls much easier to identity, even it both vowels and together. A simple frame-

based recognition model. without a mechanism allowing for persistence of previous frames cannot explain

this penonnance increase.

3.1 Experiment 23 Vowels with different start times

The experiment uses the same vowels and presentation parameters as the previous experiment. but this

time the F' of both vowels ls fixed at tool-I2 while one vowel precedes the other by up to occurs. The

second vowel duration for all stimuli ls 200ms. Ii humans only used an instantaneous spectral estimate for

vowel recognition than allowing one vowel to precede the other would not improve pedomtance. The data

shows that. as the ilrne lag between the vowels increases. recognition perfomranoe for the wwel pairs
increases from 50% to around 70%. The Increase is not nnear, but asymptotea at around 200m. The

Oms time lag point Is equivalentto the 1t)on V2 point in figure 1.

3.2 Modelling segregation by Common Fate

The proposed model uses a frame based representation of the signal. An intuitive model explaining the

Increase in penorrnance. as the time lag between the vowels increases. Is that successive frames are
subtracted from each other and that only the remainder is used to drive the pattern matching stage. If

both vowel onsets are coincident. both will appear simultaneously. if one vowel precedes the other. then

the two vowels appear in sequence. To model this the signal was processed as a sequence of

overlapping frames. Each frame was Hanning windowed with windows of 50. 100. 200 and Wilma
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Figure 4: Subject performance in the 'common Iate' experiments. Sublect's recognltlon performance

Increases as one vowel ls allowed to precede the other. Both vowels have the same F, and endpoint.

duration to model tflflerent Integration times at the auditory system. As the model was used to process

stimuli with the same F, the computation oi amplitude modulation maps would not have had any benetit.
The cochlear activation patteme were computed by Integrating all auditory model output alter windowing.

We assume that the iirst window is triggered at the onset of the first vowel. The time-lag axle detines the

oitset between the windows. It the segregation we is not present. here where both vowels are coincident.

the model will use the composite signal and recognise the same vowel twice. Subjects, as in the previous
experiment. recognise around 50% ct all pairs correctly. As the otiset between the vowels increases.

recognition performance Increases. again to around 90%. The slope ot the increase depends on the size

at the window. The model approximtes human data It Integration periods oi 200ms are used.

Integrating the models

The common late model described uses the average discharge rate In a window. not the amplitude

modulation map. This Is purely tor computational convenience. Signals with identical F. overlap 100% in
the AM map. so that segregation is not possible. the result signal would be Identical to the place code.

Both stages can be Integrated very easily by computing amplitude modulation maps and subttadlng

successive images The segregation can then be periorrned on the image resulting Irom the subtraction
step. The model predicts recognition rates at 100% where both cues are present.

4. RECOGNITION WITHOUT GROUPING CUES

Neither oi the two proposed segregation model Is able to explain the 50% recognition rate achieved by

human listeners when no segregation cues are present. This is not surprising, but suggests that a third.
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high level. process is employed. Zwicker (1984) suggested that the recognition process might have a

feedback component: Pattern matching is carried out on the vowel pair and a dominant vowel is
recognised. After the 'dominant‘ vowel is recognised. It's template is subtracted from the recovered
spectrum and the remainder ls passed through the pattern matching stage again. This Is consistem with
human data. In only 2% or all trials is none of the component vowels recognised. Both segregation
models recognise one of the two component vowels in all cases.

This process was implemented as a subtraction step and predicts a recognition rate of around 50%
without any segregation cues. Both the F, guided segregation and the common late model are able to
cleanly segregate the vowel pairs. the spectral subtraction Is a very onrde method and relies on the
availability of nonnallsed templates and extracted spectra

Modal Recognition Score

  

Figure 5: Modelperformance for the common fete stimuli. The model lntegratlon time can be set
arbitrarily. An Integration window or 200ms gives a good queliiative approxlmatbn to human data. At zero
time lag. none of the pairs Is recognised. -

     
        

    

   

5. CONCLUSION

Humans use a range of simple cues to segregate concunent vowels. and probably other phonemes. for

recognition. Models based on these cues are able to replicate human performance Increments but they
cannot iuily account ior human pertormance. it sounds are presented without segregation cues. i.e.
dichotlcally. with the same F, ln F.~phase. and with the same onset and offset, models using segregation
cues predictably fall. A simple subtraction model le able to account for the baseline performance seen In
human listeners.

Segregation models for speech recognition
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So iar the segregation models were usedto drive very simplepattern matching stages on an almost trivial
problem: recognising simultaneous vowels. Betore auditory scene analysis can be used for speech
recognition in the large. some lundamental problems have to be solved.

The models can be used In two modes. we use It by extracting spectra Irom the map. so that. assuming a

pitch tracking stages that was able to deal with concurrent speakers existed. the model could be used

directly to drive a speech recogniser. An altamalive is to use the whole map as the input to a pattern
matching stage. the computational overheads are much higher. but this procedure would be the only way
to ensure minimal commitment during the preprocessing stages and allow an explicit model or selective
attention. Dealing with more than a single speaker at a time Is a Iorrnidable challenge ior current speech
pattern matching technologies.
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