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1. INTRODUCTION

Auditory models have baen tested as front-ends for speech recognition systems, but typically do not
improve recognition significantly compared 1o conventional systems. The key problem In inlerfacing
auditory front-ends to recognition systems s the high data rate these models generate. A common
solution is to. down-sample the data generated by the models (e.g. Alnsworth and Meyer, 1934). This
process, while making the front-ends compatible with the pattem matching stages, removes all fine detail
from the representation. Psychophyelcal data suggests that it is precisely this fine detall, which is used by
human listenars to deal with situations where conventional recognition systems fail. An area, which
recelved particular attention Is the recognition of vowels in a background of a second vowel.

Experimental data shows that human listeners use two main cues to segregate simultaneously presented
vowels: One cue Is the fundamental frequency difference (AF,) between the two vowels (Assmann and
Summetfield, 1990; Barthommier and Meyer, 1995}, the other is the relative onset tims of the two vowasls
{(McKeown and Patternson, 1995). The aim of this work is to Investigate the utility of signal
representations, which expand converrtional signal representations along the axis of perceptually relevant
cues. Model perfformance on a vowel-vowael recognition task Is compared with human performance,

2. GROUPING BY FUNDAMENTAL FREQUENCY

Human recognition performance for pairs of simultaneous vowsls Improves as the fundamental
frequencies {F,) of the two vowels diverge from each other. It follows that there must be some Internal
rapresentation or mechanism which segregates them. A number of models performing this segregation
computationally have baen proposed. The most direct solution Is to employ a ‘hammonic selection’
stratagy. A typlcal axample is proposed by Parsons (1976). Fourier transforms are applied to 51.2ms
windows of tho waveform, the fundamental frequencles In the signal are estimated and harmonics
belonging to each of the estimates are extracted. This strategy has two Imporant draw-backs: harmonic
solection requires very precise pitch estimation 1o recover high frequency harmonics. 1t also does not
explain human performance because auditory filters do not resolve hammonics In the speech pitch range
above about 1kHz. Whilo auditory filters ara not selective enough lo resolve single harmonics In the
frequency domain, precise information aboul the signal Is represented in the time domain for each
fiterbank channel.

A number of existing models use autocomelation analysis of the temporal discharge pattem to explain
human performance (e.g. Weintraub, 1986; Assmann and Summerfield, 1980 - “place-time model;
Medgdis and Hewitt, 1992). Autocarrelation models extract energy al given perlodicities across all channels
or select channels according to dominance of a particular F, in a given channel. Both strategles distort the
signal and are sensitive to retativa level differences.

A robust altemative to the time-lag representation is lo perform a frequency decomposition of the
discharge pattem in each channel. This type of reprasentation, modulation frequency against channel
frequency, has been shown physiolegically at the level of the inferior colliculus (Schreiner and Langner,
1988; Langner and Schreiner, 1988).
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2.1 Experiment 1: Human Performance fot F, gulded vowel segregation

The experiment is a repstition of earlier experiments by Assmann and Summerfield (1990). Subjects are
presented with pairs of synthelic long English vowels /3,3, I, o, u/. The synthesiser and parameters are
the same as in Assmann and Summerield (1930}. Each stimutus consists of two differant vowels with
identical rms energy, one with a F, of 100Hz, the other with a F, ranging from 100 to 200Hz, only a subset
‘of the data is shown. Both components of tha palr start and end simullaneously and have a duration of
200ms with 25ms Hannlng windows at the stad and end. The subject’s task was to Identily the vowel palr.
Signals ara presented dichotically at around S0dB(A) using a 16bil D/A converter and Sennheiser HD435
headphones.
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Figura 1: Human parformance for the double vowel recognition task.

Without any sagregation cues subjects recognise around 50% of the pairs correctly. As the F, dilference
risas, performance Increases to 70%. Ona vowal In the pair Is recognised in 98% of the trdals. The data is
consistant wilh provious experiments, where similar performance increases were found for Dutch
(Scheffers, 1883}, German (Zwicker, 1984), English {(Assmann and Summerileld, 1890) and French
listanars (Mayer and Berthommier, 1996). )

2.1 The Model

The discharge pattern In each channel of an auditory filterbank codes both the average energy in the
channel (as average discharge rate) and fine timing information {as the discharge pattem) (reviews:
Evans, 1978; Langner, 1992). To Hlustrate tha point the response to a complex stimulus consisting of two
amplilude modulaled tones is shown in fig. 2. Each lone consists of a carrler frequancy, TkHz and 2kHz in
this example, which is 100% amplitude modulated with an envelope of 100Hz and 142Hz respectively. A
DFT of the signal is shown in the leftmost panel. Each of the tones activates a diterent place of the
auditory model. Channels with centre frequencies of 1.05kHz and 2kHz show the highest average activity,
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right panel. The discharge pattern, middle, shows both the carrier and envelope of the stimulus clearly as
_a function of time. As both tones activate different regions in lhe fitterbank, they could be separated by
grouping channels or activity within channels into separata streams, which would be perceived separately.
‘This Is the basis of F, gulded stream segregation.
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Flgura 2a: Signal reprasentation In an audiory
model for two 100% ampiitude modulated sinas.
Tha cammier frequencles are TkHz and 2kHz,
modulated af 100Hz and 142Hz respectively. A
DFT of the stimulus 5 given on the lef, the
temporal discharge paltam in a bank of filtars In
the centre pans! and the average activily In the
filterbank on the right. Note that the filterbank Is

Figure 2b: Ampiitude modulation map, constructed
by applying @ DFT to 204.8ms windows of tha
fiterbank oulput. The map shows iwo clear pesks,
comesponding lo the camler and modulation
frequencias of the two signal components. Streams
can ba axtracted by sampiing the map along the
modufation frequency axis. The recoverad spectra
fleft 100Hz, rght 142Hz} comespond to the

unable to rasolve the harmonics. components of the perceplual streams.

Auditory Preprocessing

The first stage in the information processing is an auditory filterbank. The signal is split into 32 0.5 Bark .
spaced channels with characteristics frequencies ranging from 100Hz to 4.7kHz. Each filter is a linear
fourth-ordar recursive gamma-tona filter {Darling, 1991; Korlekaas and Meyer, 1924). The output of each
channel Is scaled to approximate human hearing thresholds. The hearing thresholds are calcutated for
each channel from a potynomial regression mode! for data reported In Fay (1988)".

As shown in figure 2a, the discharge pattem In auditory filterbanks codes both the carler frequency and
the envelope of amplitude modulated signals. The envelopes are extracted by half-wave reciification and
low-pass filtering (T=2ms) of the output of each filter. This process Is analogous to that seen at the halr-
cell transductlon stage. Modulation frequencies are computed by Fourler transiorming a window of activity
in each narve channal. The resultant map for 32 channets is shown In figure 2b - centre panel. To remove
any DC component and low frequency beating a high pass filter with a time constant of 4ms is applied.

* The equalion reads: Ti, = 4.08." + 17.47 - 45.23.c,+ 45.76.¢" - 19.50.6} + 4.11.¢"- 0.41.¢] + 0.02.c. Where g,
denctes the channe! centra frequency in k2 and TH,, Is the absolute hearing thresheld in dB SPL.
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The map shows ensergy in the modulation spectrum against modulation frequency for each of 32 channels
in the auditory model. Carrier and envelope frequency for each object in the scene can be read off the two
axes. Spectra for Isolated tones can be recovered by sampling the map along target F,. The spectra
recovared in this way are shown to the laft (100Hz2) and right {142Hz) of the map, figure 2b.

Speech sounds have many characleristics of simple amplitude modulated slne waves. Each of the
hammonics Is modulated by an envelope, which Is directly related to the fundamental frequency. It a
volced speach sound is used to drive the model, a characterstic striped pattern appears.

Why AM-maps?

Ampliude modulation maps expand the underlying place representation in the frequency domain which is
the percephually relevant domain. The rapresantation in the maps Is fully separated along a *harmonicity’
axds. Sounds, such as voiced speech, which contaln multiple harmonicities have to be ‘collected together
to recover thelr spectra. This can be achieved by estimating the fundamental frequencies of the signals to
be extracted. Energy is recovered across all channels In the filterbank representation, so that it is
sufficiend 10 recover only the spectra cormresponding 1o the five Initlal hammonics, The recovered spectra
have the same frequency resolution as the filtterbank.

2.2 Modoelling Human Parformance

The stimuli that were used In the psychophysical expariments wera alsa used as the basis to a modelling
study. The segregation stage was used to drive a palem matching stage. Spectra are racovered by
finaarty Interpolating the energy at the known target F, for the {irst five partial spectra in the map.

Model Performance
RO guidad sogregation

Flgure 3: Mods! parformanca for tha doublo vowsl recognition lask. The modal falls of both vowels have

the same F, Performance increasas with AF, After ona semi-tong the model recognises 80% of all vowe!
pairs con"ectfy
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A simple Euclidean distance melric between the recoversd spectrum and a template generated by
averaging the recovered spectra for isolated vowels with F s ranging between 100 and 200Hz was used.
The proposed patlern matching stage could without doubt be refined, but the objectiva Is to mimic human
performanca qualllatively, not 1o implement a speech recogniser.

Tha set of stimull consisted of non-identical palrs of six vowels, leading to 15 possible combinations, and
a chance levetl of pedformance of 6.67%. The F, guided segregation stage falls when both vowsls have
the same fundamental frequency because the recovery algorithm extracts the same data twice leading to
the same recognised vowel. Subjects in this situation recognise around 50% of all vowel pairs correctly.
As tha AF, between the two vowels increasss, recognltion performance Increases to 90%. This fevel of
performance Is significantly higher than that achlaved by hurnan fisteners, but shows the same qualitative
behaviour, a minimum ol ona semitons F, difference is required to segregale the vowels. Larger
differences ‘are required Iif the window size used for analysls Is reduced, as this reduces the frequency
resolution of the frequency analysis,

A number of faclors may account for the fact that the modsl, whila showing the correct qualitative data
perdorms significantly better than human listenars. The most obvious explanation is that the machine only
‘knows' about five different vowels while humans are adapted to deal with a much broader range of
signals. Performance of the model could ba reduced by shortening the window size, thereby reducing
frequency resolution in the AM domain, addition of noise to the represerdation, or a reduction in the
number of filterbank channels. While little is known about human signal processing ar pattem matching
stralegies, it Is difficult to justify any of these steps.

3. VOWEL SEGREGATION BY COMMON FA_ATE

in experiment 1 all vowels start-and end together. Another strong cue used by human listenars 10
spgregate simultaneous vowals ks known as ‘common fate’. As s00n as one of tha vowsls precedes the
other, the second vowe! Is much easler to Identity, even If both vowels end together. A simple frame-
based recognition modsl, without a mechanism allowing for persistence of previous frames cannot explain
this pedormance increase.

3.1 Experiment 2: Vowels with ditferent start times

The experiment uses the same vowels and presentation parameters as the previous experiment, but this
time the F, of both vowels is fixed at 100Hz while one vowel precedes the other by up to 800ms. The -
second vowel duralion for all stimuli 1s 200ms. If humans only used an instantaneous spectral estimate for
vowel recognition then allowing one vowel to precede the other would not improve performance. The data
shows that, as the lime lag between the vowels Increasas, recognition performance for the vowel palrs
increases from 50% o around 70%. The. increase ls not finear, but asymptotas at around 200ms. The
0ms time {ag point is equivalent to the 100Hz V2 point In figure 1.

3.2 Modelling segregation by Common Fate

The proposed model uses a frame based representation of the signal. An Inlulliva model explaining the
increase in performance, as the time lag between the vowels Increases, Is that successive frames are
subtracted from each other and that only the remalinder is used to drive the pattem matching stage. If
both vowel onsets are colncidant, both will appear simultaneously. if one vowe! pracedes the other, then
the two vowels appear In sequence. To model this the signal was processed as a sequence of
overlapping frames. Each frame was Hanning windowed with windows of 50, 100, 200 and 400ms
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Figure 4: Subject performance in the ‘common fale’ experiments. Subject’s recopnition performance
increases as cne vowsl is allowed lo precede the other. Both vowels have the same F, and end poinl.

duration to mode! different Integration times of the audiory system. As the model was used to process
stimull with the same F, the computation of amplitude modulation maps would not have had any benefit.
The cochlear activation pattems were computed by Integrating all auditory modal output after windowing.
We assume that the first window is triggered at the onset of the first vowel. The time-lag axis defines the
offset batween the windows. If the segregation cue is not present, here whera both vowels are coincidant,
the mode! will use the composite signal and recognise the same vowel twice. Subjects, as in the previous
experiment, recognise arpund 50% of all pairs comeclly. As the oifset between the vowels increases,
recognition parformance Increases, again to around 90%. The slope of the increase depends on the size
of tha window. The mode! approximates human data if integration periods of 200ms are used.

Integrating the models

The common fate model descrbed uses the average discharge rate In a window, not the amplitude
modutation map. This is purely for computational convenience. Signals with identical F, overlap 100% in
the AM map, so that segregation is not passible, the result signal would ba identical to the place code,

Both stages can ba Integrated very easlly by computing amplitude modulation maps and subtracting
successive images. The segregation can then be performed on the image resulting from the subtraction
step. The model predicts recognition rates of 100% where both cues are present.

4, RECOGNITION WITHOUT GROUPING CUES

Meither of the two proposed segregation model is able to explain the S0% recognition rate achisved by
human listaners when no segregation cues are prasent. This is hot surprising, but suggests that a third,
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high level, process is employed. Zwicker {1984) suggested that the recognition process might have a
feedback component: Pattern maiching is carried oul on the vowel pair and a dominant vowel is
recognised. After the ‘dominant' vowe! is recognised, t's template is subtracted from the recovered
spactrum and the remalnder is passed through the pattern matching stage again. This is consistent with
human data. In only 2% of all trials is none of the component vowels recognised. Both segregation
models recognise ong of the two component vowels in all cases.

This process was implemented as a subtraction step and predicts a recognition rate of around 50%
without any segregation cues. Both the F, guided segregation and the commeon jate model are abla to
cleanly segregale the vowel pairs, the spectral subtraction is & very crude method and relles on the
availability of normalised templates and extracted spectra.
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Figure 5: Mode! parformance for the common fate stimull. The mode! Integration time can ba set
artitraniy. An integration window of 200ms givas a good qualitative approximation to human data. At zero
time lag, none of tha pairs fs racognised. -

5. CONCLUSION

Humans use a range of simple cues 1o segregate concument vowels, and probably other phonemes, for
recognition. Models based on these cuss are able to replicate human performance increments but they
cannot lully account for-human performance. if sounds are presented without segregation cues, l.e.
dicholically, with the same F,, In F_-phase, and with the same onset and offset, models using segregation
cues predictably fail. A simple subtraction mode! is able to account for the baseline peformance seen In
human listeners.

Segregation models for speech racognition
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So far the segregation models were used to drive very simple pattern matching stages on an almost trivial
problem; recognising simultanecus vowels. Before audilory scene analysis can be used for speech
recognition in the largs, soma fundamental problems have to be solved.

The models can be used in two modes, wa usa Il by extracting spectra from the map, so that, assuming a
pitch tracking stages that was able to deal with concurrent speakers existed, the model could ba used
directly 1o drive a speach recogniser. An altemnative is to use the whole map as the input to a pattem
malching stage, the computational overheads are much higher, but this procedure would be the only way
to ensure minimal commitment during the preprocessing stages and allow an explicit madel of selective
attention. Deallng with more than a single speakeratatime ls a lormidable challenge for current speach
pattern matching technologtes.
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