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MULTIBAND SAS IMAGERY

Isaac D Gerg Applied Research Laboratory, Pennsylvania State University, USA

1 INTRODUCTION

Advances in unmanned synthetic aperture sonar (SAS) imaging platforms allow for the
simultaneous collection of multiband SAS imagery. The imagery is collected over several octaves
and the phenomenology’s interactions with the sea floor vary greatly over this range — higher
frequencies resolve proud & fine structure of the seafloor while lower frequencies resolve
subsurface features and often induce internal resonance in man-made objects.

Currently, analysts examine multiband imagery by viewing a single band at a time. This method
makes it difficult to ascertain correlations between any pair of bands collected over the same
location. To mitigate this issue, we propose methods which ingest high frequency (HF) and low
frequency (LF) SAS imagery and generates a color composite creating what we call a multiband
SAS (MSAS) image. The MSAS image contains the relevant portions of the HF and LF images
required by an analyst to interpret the scene and are defined using a spatial saliency metric
computed for each image. We then combine the saliency and acoustic backscatter measures to
form the final MSAS image.

We investigate three fusion schemes. The first two schemes -- one based on a constant false alarm
rate (CFAR) detector and one based on speeded up robust features' (SURF) densities - fuse the
data in a human visual system (HVS) focused color space CIELAB? while the third scheme fuses by
using dual colormaps -- one for salient HF features and one for salient LF features. We evaluate
our results by examining three similarity metrics on the original images and the fused image. The
metrics we examined are structural similarity index metric® (SSIM), normalized cross correlation
(NCC), and mean-squared-error (MISE).

We demonstrate our techniques using imagery collected from a dual band SAS platform consisting
an HF and LF band existing two-and-a-half octaves apart. The imagery was collected over
seafloors of medium sand containing rocks and ripples. The images input to our algorithms are
normalized to [0 1] domain and are post-processed to be human consumable by removing range-
varying gain and are dynamic range compressed using an algorithm similar to the rational mapping
operator of Schlick®,

We especially examine one set of images, which we call the “ripple” dataset, to demonstrate our
fusion algorithms on a natural scene. Figure 1 shows the ripple dataset along with its joint and
marginal probability density functions (pdfs).

The author gratefully acknowledges the US Office of Naval Research for its support of this work
(Contract Number: N00014-10-G-0259)
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Figure 1 (a), (b) HF/LF (respectively) images of the ripple dataset. (c) log joint pdf of HF/LF image
pair. (d), (e) log pdf of HF and LF (respectively) images .

Vol. 36. Pt.1 2014

147



Proceedings of the Institute of Acoustics

2 CIELAB FUSION SCHEMES
2.1 Introduction to CIELAB Color Space

Canonical color spaces such as red-green-blue (RGB) or hue-saturation-value (HSV) decompose
color into a basis suitable for computer display — they are largely driven by the RGB, specifically
sRGB", color space. Such color spaces fail to account for the effects of human perception. For
example, a red object and a blue object with identical surface reflectance under ordinary illumination
are perceived as different lightness by the HVS with the red object appearing darker than the blue
object. Neither RGB nor HSV color spaces account for this property.

CIELAB color space was designed to account for the nonlinearities of the HVS by relating color
differences to perceived human sensation. Moving a fixed distance in any direction from a starting
point yields the same perceived difference in color independent of the direction moved. Such a color
space is referred to as perceptually uniform. Using the previous example of the red and blue objects
under the same illumination and observation geometry, CIELAB is able to characterize the
perceived differences in illumination where RGB or HSV cannot.

2.2 Gamut Considerations When Transforming from CIELAB to sRGB

CIELAB color space contains all perceivable colors and is independent of display device. However,
a subset of colors representable in CIELAB cannot be represented in sRGB. The valid subspace,
referred to as gamut, must be taken into account when performing operations in CIELAB and
transforming the results to SRGB. The easiest method to account for out-of-gamut colors is simply
to force colors outside the gamut to the maximum the gamut supports. This method is known as
gamut clipping and can result in perceivable distortion causing the naturalness of the image to be
lost.

We performed an optimization which scales the chroma in CIELAB to a point at which all the colors
are in the sSRGB subspace to mitigate gamut clipping when converting from CIELAB to sRGB. We
found this optimization to significantly increase computation time. We alleviate this computation
burden by reducing gamut clipping by restricting CIELAB values to a subspace mostly overlapping
with the sRGB subspace. We find this method produces acceptable image quality. Specifically, we
reduce our gamut by limiting the chroma, the amount of saturation exhibited by a color. In CIELAB,
chroma is defined as the distance from the origin to a color point projected onto the a*-b* plane and
hue is defined as the angle of this vector.

When converting from CIELAB to sRGB, some hues have more chroma headroom than others for a
given luminance due to the nonlinearities of the HVS and the design of sRGB. Because of this and
the fact the histograms of the original images have a mode near the lower end of the intensity scale,

we choose hues in the fourth quadrant of the a*-b* plane. Figure 2 shows a slice of valid sSRGB
space in CIELAB for a given luminance®.
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Figure 2. Valid sSRGB gamut in CIELAB shown for luminance L*=75,50,25 (a), (b), (c)
respectively. Notice as L* gets smaller, the valid sSRGB gamut moves to the fourth quadrant
of a*-b*.

2.3 Structure of CIELAB Fusion Algorithms

For these fusion algorithms, we divide the final image content into two components: luminance and
color. For each pixel in the output image, the luminance is derived from the acoustic intensity and
the color from its saliency.

2.4 Development of CIELAB Fusion Algorithm Using CFAR Saliency Metric

For this technique, we assume everything in the HF image is salient since it is of high resolution and
represents proud features — generally useful to an analyst. Saliency for LF is computed by
subtracting the image from a low pass filtered version of itself. The resulting image is then
thresholded whereby values less than the threshold are set to zero and values above the threshold
are untouched.

—
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where is a low-pass filtered version of f which provides an estimate of the background level. The
threshold is used to determine if a particular pixel is salient relative to the background. The
similarities of this algorithm to a CFAR detector give rise to calling it the CFAR saliency metric.

We compute the luminance channel by combining the HF image and the salient LF image using the
supremum function.

e

CHX»=ZzDOTMEAAMZ

The fused image pixel color is determined by LF saliency. The colors sweep from hue, to hue;
where hue, is used when an LF pixel has no saliency and hue; is used when an LF pixel is
completely salient. We fix the chroma for the pixel to chroma, so that pixels in the a*-b* plane lie
along a smooth manifold that is mostly in the sSRGB gamut.

The idea of using a fixed chroma is an important one. If the chroma is a free parameter, the
resulting MSAS image contains ambiguities because it results in pixels with low saturation (i.e. gray
colors) destroying the ability to determine what band the pixel is salient .

In our implementation, we set and bound the hue to lie in the fourth quadrant of a*-b*. We
estimate using a boxcar filter over a five meter area.

2.5 Development of CIELAB Fusion Algorithm using SURF Features

For this technique, we compute saliency maps of both HF and LF images. The fused image pixel
luminance is computed as a weighted average of the HF and LF image where the weight is
determined by the output of the nonlinear mapper based on the relative saliency between bands.
The nonlinear mapping function derives the luminance from the HF image unless the LF pixel is

salient and the HF pixel is not. Figure 3e depicts this function.
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The saliency maps are computed from the density of SURF features derived from a despeckled
versions of each image. The densities are then smoothed with a Gaussian kernel. The maps are
then fed to the nonlinear mapper function determining the weight, , of the HF and LF image to
assign to the luminance channel given by the equation:

ScCH>EHDOMTMOIIME &

The chroma is fixed and the hue is determined as a function of the LF saliency map, , where low
saliency is mapped to huee and high saliency is mapped to hue.. This is similar to the mapping used
in the previous section.
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where , are the maximum chroma allowed for a*, b* respectively.
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Figure 3. (a), (b) HF, LF images of ripple dataset. (c) (d) HF, LF saliency maps from original
images. (c) Nonlinear mapping function used to determine weighted average of luminance
channel. (d) Final weight factor,, used in create L* channel.
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3 DUAL COLORMAP FUSION SCHEME

3.1 Development of Dual Colormap Fusion Algorithm Using CFAR Saliency
Metric

Our dual color map fusion techniques represents the relevant acoustic intensity features in the
juminance channel and represents their derivative sonar band as color just as in the CIELAB fusion
algorithms previously mentioned. However, wherein the CIELAB fusion algorithms the color was
determined through algebra in the LAB color space, color here is computed from two predetermined
colormaps.

The two colormaps chosen represent HF and LF features respectively. The colormaps must be
perceptually linearly luminant (or nearly so) as to preserve the relative acoustic intensity perceived
by the viewer.

The luminance of a pixel is determined by the supremum of the HF and LF intensity images. The
colormap to derive each output pixel is determined by the CFAR saliency metric. When the saliency
metric is greater than the threshold, we use the LF colormap to colorize the pixel otherwise the HF
colormap is used.

.We found several célormap pairings to yield results pleasing to the eye and also naturally
interpretable but we preferred one scheme overall: a linearly luminant grayscale colormap for HF

and a “hot” colormap for LF. An example result from this scheme is shown in Error: Reference
source not founde.

In our implementation, we set estimate using a boxcar filter over a five meter area.

4 FUSION PERFORMANCE EVALUATION

. Awell fused image has sufficient similarity with both its derivative images such that its information
content is more than either source exclusively. We evaluate how well the fused image represents
each derivative image by measuring the similarity between the two. Specifically, we convert the
fused image to a perceptually linear grayscale (i.e. the luminance channel of the image in LAB color
space) and evaluate its similarity to each HF and LF derivative image. We use three metrics to
evaluate our results: normalized cross correlation (NCC), mean squared error, and a perceptual
based metric known as the structural similarity index metric (SSIM). Of the three metrics, the SSIM
metric is best matched to the visual human system but the results from the other mefrics are
presented as traditional means of measuring image similarity

The normalized cross correlation (NCC) is computed as . The mean squared error (MSE) is
computed as . The SSIM metric is defined as .
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5 RESULTS
5.1 Example Results from Ripple Dataset

(d)

Figure 4. Original images and fused results of the ripple dataset. (a) HF snippet, (b) LF
snippet, (c) CFAR saliency fusion, (d) SURF density saliency fusion, (e) Dual colormap fusion
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5.2 Fusion Results from an Image Database

We evaluate the fusion algorithms on a database of 264 HF/LF SAS image pairs and measure the
CC, MSE, and SSIM. The baseline measurement computes the metric using the HF and LF
images. For the SSIM and correlation coefficient metrics (normalized cross correlation), high

numbers are better. For the MSE metric, lower numbers are better.
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Figure 5. (a), (b), (c) Images metrics of the CFAR saliency fusion algorithm for SSIM,

correlation coefficient, and mean squared error respectively.

Vol. 36. Pt.1 2014

156



Proceedings of the Institute of Acoustics

Correlation Coefficient

S5SIM
T Lo r
—— HF
— LF
| == Baseline|| 08
............ 068} 1
0.4 ;
i :
! ! i
1 f H p
) H i ;|
021 i hofy i 1 0.2 i 1
Pa)ﬁ'\"'v\""fgl : d
i : i
: R {
0.0 ; i i j : 0.0 i ; ; ; ;
o 50 100 150 200 250 300 0 50 100 150 200 250 300
Image # image #
(a) (b)
Mean Squared Error (MSE)
0.05 : SURF :
— HF
: — LF
. i " .
004k Baseline |
1 1
R !
:'r“‘;‘ f
& f\r‘.‘,l

0.00
0

; A i
100 150 200
Image #

(9%

i
250 300

Figure 6. (a), (b), (c) Images metrics of the SURF saliency fusion algorithm for SSIM,

correlation coefficient, and mean squared error respectively.
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Figure 7. (a), (b), (c) Images metrics of the dual colormap fusion algorithm for SSIM,

correlation coefficient, and mean squared error respectively.
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All algorithms demonstrated increased information content in the fused image when compared to

any single image. This is demonstrated in Figure 5, Figure 8, and Figure 7 subplots (a) and (b)
by green and blue lines being greater than the dotted-red line, the baseline.

The CFAR saliency algorithm metric best preserved the relevant features in the HF image but has
the worst performance for the LF imagery. The LF imagery features are best preserved with the
dual colormap fusion algorithm as well as the SURF saliency algorithm with the SURF saliency
algorithm having the better HF performance of the two. This result seems reasonable given the
sophistication of the SURF saliency metric versus the two simpler methods based on a CFAR

detector.

The results of the SSIM and NCC metrics are very similar. The SSIM is the product of three

components® : mean, variance, and cross correlation. The dynamic range compression algorithm
used to generate the input images into the fusion algorithm creates HF/LF images having similar
means and variances. This causes the mean and variance terms in SSIM to cancel thus reducing

the metrics to its cross correlation term.
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6 CONCLUSION

We propose methods which ingest high frequency (HF) and low frequency (LF) SAS imagery and
generate a color composite creating what we call a multiband SAS (MSAS) image. The MSAS
image contains the relevant portions of the HF and LF bands required by an analyst to interpret the
scene and are defined using a spatial saliency metric computed for each band. We then combine
the saliency and acoustic backscatter measures to form the final MSAS image.

We investigate three fusion schemes. The first two schemes -- one based on a constant false alarm
rate (CFAR) detector and one based on speeded up robust feature (SURF) densities -- fuse the
data in a human visual system (HVS) focused color space CIELAB" while the third scheme fuses by
using dual colormaps -- one for salient HF features and one for salient LF features. We evaluate
our results by examining three similarity metrics on the original images and the fused image. The
metrics we examined are structural similarity index metric® (SSIM), normalized cross correlation
(NCC), and mean-squared-error (MSE).

We find all three algorithms produce fused images containing information from both the HF and LF
bands. We also found the dual colormap and SURF saliency fusion algorithms give the best results
based on the metrics we analysed.

Future work includes maturing the saliency algorithms perhaps basing them on points of interest
relevant to an analyst specific task, or focusing on a more HVS centric saliency metric such as ltti‘s
model’.
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