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1 - BACKGROUND

High resolution acoustic images of the sea floor are needed in applications such as mapping, mine
hunting, cable and pipeline surveying, and underwater archaeology. One important imaging
technique is synthetic aperture sonar (SAS). Fine cross-range resolution is obtained by using the
motion of the sonar platform to synthesize a much larger virtual acoustic aperture or baseline than
the sonar's physical aperture by coherently combining multiple pings. However, SAS imaging
becomes problematic at long ranges because of multipath interference (see fig. 1). The multipath
interference results in additive snow-like noise corruption of the SAS image due to the ping-to-ping
decorrelation of surface bounce paths by sea surface roughness, filling in object shadows.

Multipath interference can be suppressed using a receiver with vertical directivity since the direct
and surface bounce paths have different arrival angles. However, in most realistic scenarios an
impractically large vertical aperture will likely be needed at long ranges (path angles become close
as range increases) to obtain adequate multipath rejection if using conventional delay-sum
beamforming (steering a beam toward the bottom). Acceptable multipath rejection with a small array
is only attainable using either adaptive interference cancellation or null steering. '

The objectives of this paper are (1) to experimentally demonstrate with actual in-water SAS data the
blind separation of the direct path signal from the surface bounce multipath interference using a
blind algorithm proposed in [2] that exploits differences in the ping-to-ping temporal coherence of
the paths and (2) discuss the challenges and lessons learned from real data implementation. The
motivation for using blind separation rather than conventional matrix inverse-based. adaptive
interference cancellation schemes such as Generalized Sidelobe Cancellers (GSCs) [1] is because
blind methods do not need accurate array calibration and signal steering vector information, hence
simplifying implementation, and furthermore, signal-free training data is not needed (signal and
multipath interference are simultaneously present here). :

The paper begins by reviewing the mathematical models for the signal and interference followed by
. optimum signal estimation and the blind separation algorithm. An initial version of the blind
algorithm is implemented as a GSC-like hybrid algorithm (using signal and signal block beams
calculated from the nominal test geometry, but still separated blindly) to maintain a constant signal
response and tested on real SAS multipath data. The initial implementation reveals poor and
unstable control of the signal response that resulted in artifacts in the constructed SAS image.
Motivated by the challenge of maintaining a constant signal response in a blind algorithm, a
modified version of the algorithm is developed that combines the GSC-like implementation with a
blindly estimated signal blocking matrix and is shown to work well.
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Figure 1. Multipath interference from surface bounce paths and simulated SAS images showing the
effects of multipath interference. Observe that the multipath interference corrupts the image with
snow-like noise and fills the objects acoustic shadow. o '

2 MATHEMATICAL MODEL OF SIGNAL AND INTERFERENCE

‘Assume that the SAS system has a planar receiving array and a point source transmitter. For the
sake of brevity, the planar array is modeled as consisting of only two columns of equi-spaced
hydrophones and a transmitter located at the center (see fig. 2a). Denote the complex vertical
aperture sensor or beam output (at a given frequency) Mx1 vectors containing the backscattered
bottom signal and multipath components impinging on the leftmost and rightmost staves from some

range cell in the kth ping cycle as X, ‘and Vs respectively. Mathematically, the frequency domain -

vector outputs from each respective stave are

P . :
= Xz X —x
X, =a;s +ch,khj+nk ‘ )
—~ =1
signal J=
. multipaths
and
P o :
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Vi = QS +ch/chj+nk @
signal J
multipaths

where the vector § is the signal basis vector or array manifold, # , is the basis vector of the jth

multipath interference component, P is the number of interfering multipaths, «;,&] are the

complex signal amplitudes, the ¢ i are complex random variables corresponding to the interference

amplitudes, and the elements of the background noise vector #;", 7, correspond to volume and
surface reverberation and ambient noise.
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A. Ping-to-Ping Coherence of Direct Path Signal :

Ping-to-ping coherent bottom reverberation measurements are easily obtained from a SAS system.
Each transmitter-receiver pair in fig. 2a constitutes a bistatic geometry. It has been shown that when
the range to some local annulus of scatterers is essentially in the far-field (relative to the sensor pair
basline), the bistatic receiver-transmitter. pairs in the array can be approximated by equivalent
fictitious monostatic receivers-transmitters located at their mid-points [3] (see fig. 2a). In other
words, the backscattered signal time series measured from the seafloor (ignoring multipaths) by the
bistatic receiver-transmitter pair is approximately as that measured by a single receiver-transmitter
located at their phase center. If the speed of the SAS vehicle ‘and the ping repetition rate are
adjusted such that the array is displaced by distance d/2 between successive pings, the array
phase centers overlap, as depicted in fig. 2b and each pair will measure the same reverberation.

Thus for any pair of overlapping fictitious staves at pings k and k+1, we have «; ~«},, and
because of sea surface roughness, the multipaths are uncorrelated ping-to-ping, i.e.
Elc e 0.

a) Planar array and fictitious antenna elements b) Overlapping of array phase centers
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Figure 2. (a) Planar receiving array geometry and creation of fictitious' monstatic elements using the
phase centers of the receiver-transmitter pairs. (b) Overlapping vertical phase centers obtained b
adjusting the ping repetition rate and the SAS vehicles forward speed. :

3 BLIND SEPARATION

A. Optimum Estimation _
The objective is to estimate the signal ¢, from the noisy measurementx, . If the covariance matrix

R of the interference were known, the best linear minimum mean-square error (MSE) estimator
(also maximum signal-to-noise ratio) would be [1]

Gy =W %, | | o 3)
where the optimum filter weights are given by

- e = H 1= ,

Wo = RS /SRS | (4)
.U'nfortunately,'in this and most applications the interference covariance matrix R is not known

beforehand. Also the signal steering vector s itself may not be known accurately.

B. Blind Separation Using Ping-to-Ping Coherence
We now describe and motivate the blind multipath separation aigorithm proposed in [2]. Intuitively,

since the signal. is highly correlated or coherent ping-to-ping, o; ~ a]fH, and the multipaths are

uncorrelated, E[cjkc;,m] ~ 0, the filter weights for multipath suppression in. principle could be
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estimated by minimizing the phase differences between successive pings. Fig. 3a shows
histograms. of phase difference measurements obtained from actual experimental data for the
multipath interference and direct path signal. We see that the direct path signal phase fluctuations
are highly concentrated whereas the multipath phase differences are almost uniformly distributed as
expected. Therefore, we propose estimating the weights by minimizing £w" %, — Zw" ¥, over
n=1,2,...N. This approach does not need signal-free training data nor any prior signal steering
‘vector or array calibration information and hence is blind, and furthermore, since it only depends on
the ping-to-ping phase difference, it is invariant to fluctuations in the signal magnitude from
transmitter instability and range differences. Direct numerical evaluation of the phase differences is
_ problematic because their cyclical nature (modulo 2r) may require phase unwrapping. This
difficulty is overcome by using the circular variance [4]. The circular variance (CV) is deflned for
glven a set of angle measurements 61,...,6n as

oVB,,....0,]=1-x> +¥*

_=1/N.Zcos¢9," ,yzl/Nz:sinﬁk
. k=1 k=1

)

and lies in the interval [0,1], with one corresponding to maximum variance. It is easy to evaluate .
- numerically and used widely by the statistics community to analyze the dispersion of angular data
such as wind and ocean current direction, fracture orientations, and animal movements. We
therefore advocate estimating the filter welghts by iteratively solving

min# cv[A6,,A0,,...,A0,] | , . G
(see [2] for details) where AO, = 2w"%, — 2"y, .

In regards to optimality, the CV is related to the maximum likelihood (ML) estimate of the
concentration parameter of the von Mises distribution [4]. The von Mises distribution is often used to
model circular or angular data and is considered to be the circular analog of the regular Gaussian
distribution [4]. Additionally, the statistic N(1-CV)? corresponds to the Rayleigh test for testing phase
uniformity [4]. This suggests that the CV should be a good measure.of phase dispersion or.
coherence. In [2] it was shown that the blind separation algorithm.is competitive with parametrlc
high resolution methods and compared favorably to the Cramer-Rao Iower bounds

4 REAL IN-WATER SAS DATA DEMONSTRATION

A. Scenario - .

‘The blind separation algorithm is now demonstrated on actual shallow water SAS multipath
interference data. A bottom-mounted rail SAS test system was used rather than a SAS vehicle for
the data collection. The SAS receiver and transmitter assembly are similar to that shown in fig 2a.
The ping-to-ping motion of the rail was adjusted to obtain overlapping antenna phase centers (as in

fig. 2b) and the transmitted signal was a short sinusoidal pulse. Figure 3 shows ping-to-ping phase =

- histograms and vertical delay-sum beamforming analysis of the data using thirty consecutive pings.
We see that the multipath interference from the first single- -bounce path is strong compared to the
direct path signal, with considerable sidelobe leakage into the bottom beams at longer ranges (f|g
3b). Also, as expected, the multipath interference is approximately uncorrelated ping-to- plng
whereas the direct path S|gnal is highly correlated (fig. 3b). ; :
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Figure 3. (a) Histogram of ping-to-ping phase differences. (b) Vertical delay-sum beamforming
analysis of thirty sequential pings as a function of vertical arrival angle and slant range. The upper
plot shows the average power and the lower plot is the measured ping-to-ping correlation. Positive
vertical angles correspond to dlrectlons toward the bottom whereas as negative angles correspond
- tothe surface

B. Initial Hybrid GSC-like Blind Algorithm Implementation
In order to reconstruct the time series from the spatially filtered frequency domain data, the -
estlmated weight vector W' must be scaled such that a constant signal response is maintained,

ws = ¢, where c is some constant. However, the scaling factor ¢ cannot be determined blindly
and thus some ancillary information about the array or signal must be used for scaling. This is a
problem inherent with blind source separation methods [5]. In real SAS systems:there is prior array
calibration and bottom pointing information available. We now assume that a reasonably accurate
steering vector can be formed, although not perfect. Assuming a rough steering vector is available,
the blind method in lmplemented as a GSC (see fig. 4) in order to maintain an approximately
constant signal gain for time series reconstruction. Since the blind separation algorithm doesn’t care
about the data coordinate system, the GSC-like |mplementatlon should still be robust against array
calibration and beam pointing errors.

“Fig. 4. GSC-like lmplementatlon of blind aIgorlthm where 5 is the sngnal steering vector and Bis the
signal blocking matrix.

. C. Experimental Results
A total of 120 pings were collected for SAS processing. Frequency domain data snapshots of the
form in (1) were constructed by subdividing the time series of each channel into short intervals or
range gates (length chosen so that the bottom signal and multipaths were approximately
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stationary), FFTs computed for each interval, and the frequency bins then arranged into data
vectors. The data set of 120 pings was broken up into subsets of 30 sequential pings and
processed individually. The blind filter weights were estimated in each range gate using the GSC- -
like implementation of fig. 4 and the data vector then spatially filtered, with the blind estimate of the
signal in the mt" DFT bin given by '

sy = H = ’
Ay = Wil;lind (m) xl’c (m) i (7) )

with X, (M)=[§,HH]B]Hik(m). For reference, the signal was also estimated via conventional

beamforming, i.e. &}, =5, %,(m). The signal steering vector was calculated using the nominal
experimental geometry. ‘

The performance was evaluated by measuring the output ping-to-ping phase difference circular
standard deviation [4] and the power and then plotting it as a function of slant range and frequency.
Fig. 5a shows that the blind method has significantly reduced ping-to-ping phase dispersion when
compared against the conventional beamformer, suggesting that the blind method is working well in
suppressing the muiltipath interference. However, the blind method has large fluctuations in the
output power (see fig. 5b), indicating that a constant signal response is not being maintained. This
is not desirable because the gain fluctuations will introduce errors and artifacts into the SAS image.

If we examine the blind signal estimate

4= gf’x; w;;',y,nd_BH;‘év , ’ (8)

the likely culprit causing the large gain fluctuations is signal leakage by an erroneous signal
blocking matrix (array calibration and signal beam pointing errors). Maintaining constant gain is a
problem common-to most adaptive beamforming algorithms. Some popular solutions include
directivity and derivative constraints [6]. These however would violate the spirit of biind separation
since they require detailed prior knowledge of the signal. In the next subsection we show how the
signal blocking matrix itself can be estimated blindly, thus greatly stabilizing the output gain.

D. Improved Hybrid GSC-like Implementation of Blind Algorithm Using Blindly Estimated Signal
Blocking Matrix 3

The signal blocking matrix B can be estimated blindly using a canonical correlation-analysis-like
scheme. Canonical correlation was first proposed by the statistician Hotelling in 1930s for
determining dependencies between pairs of multivariate random vectors [7]. Suppose two random
vectors have covariance matrix Rx and Ry respectively and cross-covariance matrix Rx. Then the
first canonical weights or coordinates are found by maximizing the cross-correlation

maxc,,c, C¢,R,Cc, (9)

subject to var[¢/x]= Var[E;fj/] =1. The remaining weights are found by successively solving -

= = =zHp =.
maxc,,c, cka?cycyk (10)

for k=2,...,M subject to the previous variance constraints and E;ZRWEWI =0, EngxExj =0, and
Ey},fRnyyj =0 for k=j. The procedure for solving these equations is straightforward (modifying them

to the complex-valued data case is easy) and can be found in most multivariate statistics texts (e.g.
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see [7]). Since the nominal cross-covariance matrix is ny = 0'3255 7 , the signal blocking matrix

B=I[¢, |, || &, ] formed using the non-principal canonical weights must satisfy B”§ =0.

To estimate the signal blocking matrix B, the nominal quantities in (9) and (10) are replaced by their |
estimates and the principal canonical weight is set to the initial blind weight vector estimate, i.e.,

€y =C,; =Wy, and then are solved for the remaining weights. Our observation is that through

empirical analysis, we have found that that the blind weight estimate provides a much superior
estimate of the principal canonical weight than does the standard approach. The estimated signal
blocking matrix is then plugged into GSC implementation depicted in fig. 4 and the blind filter
weights are estimated again. S Lo '

5 PSUEDO-SAS IMAGES

Finally pseudo-SAS acoustic intensity images (bearing vs. slant range only) were generated of the
bottom using the data filtered by conventional beamforming (see fig. 6a) and the improved blindly -
estimated filter weights (see fig. 6b). We see that the blind method (fig. 6b) has significantly reduced
snow-like interference and improved contrast compared to conventional beamforming in the regions
labeled A, B, and C in fig. 6a. ' : \

a) phase circular standard deviation b) power
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Figure 5. (a) The measured output ping-to-ping phase difference circular standard deviation (in
degrees) plotted as function of DFT bin and slant range for the blind method (lower plot) and
conventional beamformer (upper plot). (b) The measured mean output power (in decibels) plotted
as function of DFT bin and slant range for the blind method (lower plot) and conventional
beamformer (upper plot). , ' ‘
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Figure 6. Pseudo-SAS image intensity in decibels for the (a) conventional beamformer and (b) blind
separation method plotted as a function slant range vs. arrival angle.

6 LESSONS LEARNED AND CONCLUSION

Experimental implementation of array processing algorithms is non-trivial. The key challenge was
not the estimation of the weight vector, but rather maintaining a constant signal response to enable -
accurate reconstruction of the time series from the spatially filtered frequency domain data. It was
‘seen that relatively small errors in the assumed steering direction and array calibration can lead to
large gain fluctuations that introduce errors and artifacts in the SAS image, even though from an
output signal-to-noise ratio standpoint, the weight vectors were being estimated accurately.

The hybrid approach proposed here of using a GSC-like implementation of the blind method
together with a blindly estimated signal blocking matrix is a viable way of maintaining a constant
signal response without needing highly accurate array calibration and steering direction information.
Although more work is needed, the new blind method works well in suppressing the multipath
interference and is generally robust. ' '
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