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1. INTRODUCTION

It has long been known that if a double—leaf structure consists of a framework of beams, the beams
will not only influence the vibration field directly, i.e. shortcutting the plates. but also affect the
acoustic field in the cavity. The beams. or studs. can be seen as walls in the cavity, and are thus
introducing finiteness. Consider a double-leaf structure excited by an incoming wave on the source
side. The plate on the source side is excited and will radiate to the cavity and excite the framing
beams. The plate on the receiver side is then excited by the acoustic field in the cavity and by the
vibration of the beams, and will radiate to the surrounding acoustic fields. An expansion in a suitable
Orthogonal series of the field is made to take into account the finiteness of the cavities. This solution
can be compared to the solution where the finiteness is ignored, i.e. the waves are let passing
unaffected through the beams.

The classical work on double-leaf walls is made by London [1], and is not taking into account the
studs or the finiteness of the cavity. Lin and Garrelick [2] investigated the transmission of a plane
wave through two infinite parallel plates connected by periodical studs that behave as rigid bodies. A
fluid coupling in the cavity between the plates is also present, which lets the waves passing
unaffected through the beams. The two systems were solved simultaneously by means of Fourier
transforms. Takahashi [3] considered noise control in buildings having double-plate walls. Each
structure considered consists of two parallel plates of infinite extent connected by various
connectors. The connectors are point connectors or rib-stiffeners. The structures were driven by
point forces, and the resulting sound radiation was studied. The authors has studied impact sound
transmissions in lightweight floors using transform technique [4].

The approach in the present paper is similar to the one introduced by Mace [5], but the treatment of
the cavity is original for the present paper.

2. FORMULATION OF THE PROBLEM

Consider a double-leaf wall stiffened with studs, Figure 1. The studs are assumed to be infinitely stiff

in bending round the z~axis and of zero thickness. However, they are allowed to bend round the x-
axis. The structure is infinite in both the x- and y-direction.
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Figure 1 Double—leaf structure
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where p; is the pressure due to an exciting, or incoming, wave, p, and p, are reaction pressures due
to reflected and transmitted waves. The exciting pressure is

. -i(k,x+kyy+k,z-iwl)
Pi=Pi9

where a possible choice of the wave numbers are k,=k.sin9cos¢, ka-sinosinp, k,=kcos€, is. an
incoming wave. The time dependence and the z-dependence exp(iw t-kz 2) will henceforth be
suppressed throughout. Since the structure is periodic in x the response further satisfies the
periodicity relation. se 9.9. [5],

w,-(x+l)= w,-(x)e’”‘". (1)

Let the plates be modelled according to thin plate theory. The equations that we have to solve can
be written as

4 2 '
DIV W1“ "71"“) W1 = Pi|y=o ‘Pc|y=o +pr|y=o — PM

4 r 2
02V W2—m2'w W2=Pc| d'ptl d+p12y= r= (2)

a4V4 =37—2ki
2

0.7—2 + k:
5x

where D,- and m,-"are the flexural rigidity and mass per unit area of plate number i, a) is the angular
frequency and d the distance between the plates. It is convenient to decompose the reflected
pressure into two components,p,=p,.,+ps, where Pr.r is the reflected pressure generated by a rigid
reflector and p5 is the scattered part due to the elastic motion of the structure. The reaction
pressures from the surrounding fluid can be assumed to be coupled to the displacements field by
operators,

paly=o = nil psly=0 =RW1. p. F0 =TW2 (3)y=o‘

where R and T are operators that will be determined in section 4. For the cavity reactions p; and the
frame p, reactions the coupling to the displacement field is not so simple. and is therefor left to later
discussion.

The Fourier transform of w with respect to the co-ordinate x and the corresponding inverse
transform is defined as

W,(a) = jw,(x)e"“dx, w,-(x) = i IVT/I-(a)e‘mda. (4)
4’ 2;: 4)

Thus, the Fourier transform over x of the incoming wave yields a Dirac function. For the reaction
pressure, the transform yields algebraic expression instead of operators. Thus, the transformed
pressures are

=Fiw1, p, =TvT/2 . (5)5; + 5,... = 2fi,- 6(a — kx)e'ik‘y , 5s ly=oy=0

Applying the Fourier transform with respect to xto equation (2), taking into account (5), gives
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St 0 V71_ [31' 5:1 ficlo
[O $21W2]_2[0:|6(a_kX)—[filz:l_[ficld:‘ (6)

51(11): D1(ar2 + k3)2 — ml'zu2 — Ff(a). 32((1) = 02(a2 + kgf — 5a)2 + T(a),

where

is spatial stittnessest Solve for the transformed displacement

w = zs‘raiala — a) — s-‘fi, — 5‘s: (7)

where the matrices S and W can be identified in (6). The displacements are found taking the
inverse transform of (7). The inverse transform can formally be written

w = 28"(kx)t>i — F;‘(s“fi,) — Hts—‘65). (a)

3. THE CAVITY, FINITE CAVITY SOLUTION

3.1 FORMULATION

Consider Figure 1, where a fluid is occupying the space 0<y<d, divided into subspaces nlsxs(n+f)lt
An acoustic pressure pc(x,y,z) is present. The acoustic pressure satisfies the Helmholtz equation

[§+%Jpc +[:—:-k§]pc =0 (9)

where so is the speed of sound in the cavity. The acoustic pressure also satisfies the boundary
conditions

a 13"[no] =w2pc'w1’ |: pc] =w2pc‘W2'

y=d

   

a a
y y=° y (10)

[5pc] =0, n=—oo,...,-‘l.0,f,...,ac
6X x=nl

ensuring equality of the fluid displacement at the plate sur‘iace and the plate displacement, and

absence of displacement at the rigid walls at x=nl. Divide the field into subfields corresponding the

cavities

pc(x, y) = i pg”) (x, y)@(x, ml, ml + I),

0(x,ml,ml 4:I) s 6(x — ml) — 9(x— (m +1)I)

where 6(x) is Heaviside's step function and 9(x,a,b) is the hat function that equals unity between a

and b and are zero otherwise. Assume that the pressure field in the m‘th cavity can be written as a

orthogonal sum of cosinus functions in the x-direction.

(11)
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(m) =“” (mi =%”"=0pa (x.y) ganpc.n(Y)C°5(n”x/I)v an—{1 "Mo (12)

It is easily shown that this assumption fulfils the boundary conditions, as well as the Helmholtz
equation (9). The periodicity is taken into account by (1). This implies that the pressure acting on two
neighbouring bays is related to each other trough a phase difference e""’, and especially

pgm) = p£0) 9—ik,mi

Hence, equation (11) reduces to

Pclx. y) = pl”) (x, y) idiom/mu I)e"*~'"’ (13)
Ina-4n

Thus, the total field in the cavity is determined by the field in the O'th cavity. This field is expressed in
terms of a cosinus series, equation (12). Hence, the two sums is separated.

3.2 THE FIELD IN THE O'TH CAVITY

The cosinus expansion (12) is inserted into the Helmholtz equation (9). The so found expression
reduces to a one-dimensional Helmholtz equation in the y-direction for each Fourier component.

- Define a wavenumber for the n'th component

k ill

2
[iny." R? {7) - k? (14)

The solution can be written in a standing wave consisting of one wave in the positive y-direction and
one in the negative y-direction,

A —'k n ~ 'k npéf’hy) = pm -a ’ +12“- -e' y' ’. (15)

The remanding boundaries is now expanded into cosinus series

w,(x) = isnwm cos(mrx/l)<—+ win, = w,-(x) cos(nrrx/I)dx. (16)3
n=0 I o

-
_
.
‘

Thus, the boundary condition ensuring equal displacement in the cavity and the plate are expressed
in terms of a cosinus-series The boundary condition has then also to be fulfilled by every
component

. (o) a (0) .|:0pc.n:| = wzpc _W‘Im [ plan] = wapc I Wain . (17)

Y=0 yxd

  

13y 51/

Taking into account the assumed standing wave in equation (15). and derivation and insertion in the

boundary conditions (17) yields the amplitudes of the components in the standing wave. insert this
amplitudes in (15)
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wzpc -(w2ln -cos(kylny)— w”, -cos(ky',,(d —

sin(kyv,,d) - kw, ‘
(0)

pan (y) = —

Putting y=0 and y=d respectively, and rewrite in a matrix lorm yields

new) = map: cotlkmd) csclkmd) w," J
pffld) kw, csc(ky|,,d) cot(k d)

J

 

y." ‘Wle

 

n

Using (13) and (18), the reaction pressures can then the be expressed as

= [iaan|: t?" :|C05(n7rx/I)] idx,ml,ml+l)e""x’”’ .
n=o _ 2,n m=_,,,

The displacement field in the plates are yet unknown, and need to be solved lor.

3.3 FOURIER TRANSFORM OF THE CAVITY PRESSURE

The spatial Fourier transform of the cavity reaction pressure is

m m a l V

fic(a,y) = [2:5an cos(mrx/l)- ZQ(X,mI,mI+l)e""""’e"'"dx .
.mn=0 m=—ao

Define the abbreviation

a: a F), {cosV—TXJ Z 9(x, ml, ml + I) e'ik'm’}.
m=-uc

It can be shown, using the Poisson formula and other manipulations, that

2” a ' ia — iae’“ cos(mr) +' 5,3- e’“’ Sin(ntr)
m = — 5 - k — 2m l . sI §n(a)m§ (a x 7r/ ) §n(a) 02 _(M/I)2

Combining equation (19) with (21) yields the transformed cavity reaction pressures

5c(av0) = 1,nwi,n ‘ J12,nW2,n)5n §n(a)] 26(a _ kx _ Emu/I)
m: —no

a:- 2 °° .
pc(avd) = ‘T”[ (J21,nW1,n ‘J22,nw2,n)£n §n(a)) 25(‘1 — kx " 2m”//)

n=0 m=_m
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4. THE REMAINING REACTION FORCES

The continuity equation at each plate-beam connection points are assumed to be spring like and
takes the following form

w1(nl,o,z) = u,,(z) n = —ao,...,oo

o,,,,(z) — 02,,(2) = 0w,(n/,0,z) n = —cgo,...,oo (23)

02,,(2) = K(w1(nl,0.'z) — w2(nl,0,z)) n = —oo,...,oo

where G(-) is a linear operator. For the n'th frame, the equation of motion, modelled as a Euler beam
and excited by a linear force 0,,(2) along the line x =nl, is

d‘u"

E, 1’ dz‘

 

— PIA/(021M = Oi," ' 02n- (24)

where E], is the bending rigidity and pfiAy is mass per unit length of the frame. From equation (24) the
operator G in equation (23) can now be identified. The y-deviates will be replaced by ky‘. The frame
reaction pressure is

The displacement fields w, and w; satisfy the periodicity relation (1) since the structure and driving is
periodic. Therefore

w1(nl) = w.(0)e""“", w2(nl) = w2(0)e'i"k'l .

In terms of the displacement, the frame reaction pressure of the beams then is

PM _ G+K K W‘(0,0,Z) °° _‘.ka, _

[9/2]_[ K KJLWAMJJZQ 50‘ m’) (25)
m=—on

where G = E, bk; — p,A,w2. The Poisson sum formula can be used to show that

iei(a-kn)m1227” 25(11 — 2mg/l — kl) ‘
m=—uo m=—m

Applying the Fourier transform and the Poisson sum formula gives

[fin]: 2_,,[G+ K K] w1(0,0,z)]i5(a_2mfl/I_ kl) (26)
[3,2 I K K —w2(0,d,z) m”:

Consider now a fluid occupying the upper half space with an acoustic pressure p,(x.y,z), L<U. and
the lower half space is occupied by afluid with a acoustic pressure p,(x,y,z), 22d. It is assumed that
the two fields have the same sound speed co and density pm Two moving surfaces are occupying
the x-y-plane in 2:0 and z=d, vibrating with displacements w,(x,y) and way). The acoustic
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pressure satisfies the Helmholtz equation, similar to (9) but with Coas the speed of sound, together

with the boundary conditions

+ %]z=o = wzpowfv [%]Z=d = ("2/70 W2 : (27)

where p0 is the density of the fluid. Decompose the reflected pressure into two components,

p,=p,m+ps, where pm is the reflected pressure generated by a rigid reflector and pS is the scattered

part due to the elastic motion of the structure. The Helmholtz equation is now transformed. indicating

a wave in the z-direction. Therefore. (27) and assuming only outgoing waves and using the definition
of the rigid reflector, gives

wzp- W201) '
2 . ~

“’ p M“) fimla.0)=fii(a,0). him/M):— <28)55(aro)=——v _

i‘ikz—aZ—kg i kz—aZ—kfi

where 2:0 in the first to expressions and z=d in the last expression. Hence, we can identify the

coefficients in (5)
2

Fl=—T= “’ ‘7
1‘sz — a2 — k3

. 5. THE INVERSE TRANSFORM

In equation (8) was the inverse transform of the displacements formally given. The transformed

pressures from the cavity (22) and frame reactions (26) is now inserted into (8). The Dirac functions

ensure that the inverse transform can be taken and the displacement field can den determined. The

displacements are

A —ik x
‘

W1 (x) =3’— —
n. s1(k,)

1 1 do (29 a)

— + K)‘ W1(0) - K‘ W2(o))z1u)(x) ‘ 7 20(Jttnwtn _ J12,nW2.n)Enzt(,71)(x)
fl:

1 1 °°
W2(X) = W1(0) — K‘ W2 (Wig) (X) + 7 2(J2m W1.n ' J22,nWZ.n )En (X) (29 b)

n=0

where the lollowing abbreviations has been used

_- + x —i(2mn/l+k,)xa: e 1(2rmr/l k,] on g (2,777,“ + kx)e

£30m E z s (Zmz/l + k )' [Sam 5 z n S-(2m Ir/I + k )
m=—uc j x m=~ao / x

where i=1, 2. The w,(0), w2(o) and the Fourier components are still unknown. To determine them, let

x —> 0 in (29), '
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Pi

Ir-S,(kx)

(G + K) K 1 ”° 1 ’°——7 z,‘"(o)w, (o) + 7 21‘” (0)w2(0) — 7 25.1, ,_nsnz{f,’ (o) w,” + 7 ZOJWE, zilf,’ (o) w“
n= n:

W1 (0) =

K2") (0) Kz"’(o) 1 m 1 °°w2(0) = —27— w1 (0) - 2, w2(0) + 7 Z J2,_,,£,,Zéf,),(0)w1'n — 7 2 J22,"5,:§2(o) w2_,,
"=0 n=0

 

Multiply (29) by cos(szrx/I) and integrate from O to I. 5 being an integer, in order to identify the Fourier
components,

2 I fi,e"*~* cos(s;rx/l)dxWis =Ti——~— -
0 7r - 81(kx)

2(6 + K) 2K 2 m 2 ‘”
' 2 [1(2W1 (O) 1' T W2 (0) ' T Z J11.n€n l1(.cs),nW1.n + _2 Z J12.n£n’1(,cs?n W2,n

I I I "=0 I n=0

2K , 2K , 2 °° 2 m
was = 75' lg; W1 (0) ‘ 7—2 W2 (0) + [—2 ZéJzti-ié‘n 42m th ' 7—2 Eat/22:15:: [gm W2,n

II= n:

where the following abbreviations has been used,

I l
EIcos(srrx/I)Z(i”(x)dx ll”) 2 I cos(szrx/I)E‘F,),(x)dx .

o o
1.s.n I.

where i=1, 2. A system of equations can now be set and solve for w1(0), w2(0) and the Fourier
components. Hence, the problem is solved.

6. CONCLUDING REMARKS

The paper has shown that it is possible to use periodic assumption and transform technique to
include the effects of the finiteness when treating a double-leaf wall with studs.

7. REFERENCES

1 London, A 'Transmission of reverberant sound through double walls', Journal of the Acoustical
Society of America 22 (2), 270-279. 1950,
2 Lin, G. F. and Garrelick, J. M. 'Sound transmission through periodically framed parallel plates',
Journal of the Acoustical Society ofAmerica 61 (4), 1014-1018. 1977.
3 Takahashi, 0., 'Sound radiated from periodically connected double-plate structures', Journal of
Sound and Vibration 90 (4), 541-557, 1983.
4 Brunskog, J and Hammer, P. ‘Prediction of impact sound transmission of lightweight floors',
Engineering Acoustics, LTH, Lund University, TVBA-3105, Sweden, 1999.
5 Mace, B. H. 'Pericdically stiffened fluid-loaded plates, l: Response to convected harmonic
pressure and free wave propagation, II: Response to line and point forces‘, Journal 0! Sound and
Vibration 73 (4), 473-504, 1980.

 

   Proc,|.O.A. Vol 22 Pan 2 (2000i  


