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This paper reports on the investigation of the sound pressure response and radiation impedance of
a loudspeaker horn driven by an electro-dynamic transducer. The investigation has three parts, the
measurement and further the simulation using two independent programs, using finite and boundary
element methods. Issues associated with meshing for the BEM and FEM and the experimental
setup are discussed.

1 INTRODUCTION

In this paper we present the modeling of the frequency response of a given horn. Our curiosity is
focused on the results  of  the simulation software applications used and how the results  would
compare. Also presented is the measured directivity, which provides a further point of comparison. 
The simulation tools used solve the wave-equation in the frequency domain for given boundary
conditions.  As  a  result  we  can  obtain  observations  of  the  sound  pressure  response  and  the
radiation impedance. 
To  understand  the  performance  of  the  horn,  independent  of  its  environment,  and  without  any
contribution from diffraction of baffle edges and room acoustic effects, it is informative to study its
performance when it is mounted in an infinite rigid baffle and radiating into a half space.
For comparison of the calculation results we selected two quantities. Firstly, the lumped acoustic
radiation impedance at the throat of the waveguide. Secondly, the sound pressure level at a certain
fixed distance at various angles in front of the baffle. 
The  lumped  acoustic  radiation  impedance  is  notoriously  difficult  to  measure.  However,  it  is
straightforward  to  extract  from  a  simulation  model.  The  radiation  impedance  is  an  important
parameter for the design of a waveguide because the radiated power is proportional the radiation
resistance.  Further,  its  curves  are  ideal  candidates  when  it  comes  to  compare  the  results  of
simulation software. This is so because the calculation of the lumped radiation impedance involves
the whole acoustic field as an integral value. 
The reason, why we selected the sound pressure is that it is easily reproduced by calculation, and
also because we have had available the measurement device for taking directivity sound pressure
measurements. 

2 THE WAVEGUIDE

The device under test is a little horn or waveguide of over-all dimensions:

Mouth width x height 95 x 95 mm
Throat diameter 12.7 mm
Length 170 mm
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Figure 1: Sketch of waveguide

Figure 1 shows a sketch of the view into the mouth, a cut of the view of the curved sides and a cut
of the view of the linear sides.
The flair of the horn does not follow any particular mathematical function. It has been designed with
the help of a CAD-tool. Basically the waveguide opens linearly with a slight curvature in the first
quarter along the horn. Additionally there is a bump on two opposite sides yielding a constriction
along the center of the horn.

3 LUMPED ACOUSTIC RADIATION IMPEDANCE

During development of a waveguide for a loudspeaker the designer typically has a close look at the
curve of the lumped acoustic radiation impedance. This is so because the acoustic output power of
the horn is proportional to the real part of this impedance. Hence, the variations of the impedance
curve will inevitably have an effect on the sound quality of the speaker. When we speak here of the
radiation impedance we mean the lumped acoustic impedance of the piston mode at the throat:

Z a = p
q

(1)

with volume velocity q=v⋅Sth and sound pressure p. We assume here that the acoustic velocity v
is  constant  (pistonic)  over  the  cross-sectional  area  of  the  throat  Sth and  points  into  the  same
direction. In formula 1 the sound pressure is thought to be a mean value over Sth. A plausible mean-
value can be obtained with the help of the acoustic power, which is in general:

Pa = 1
2
⋅∫
S

p⋅⃗v̂ d⃗S (2)

here, the factor “½” comes from the crest-factor of a sinusoidal wave where we assume p and v to
be peak values of a sinuidal signal. The acoustic velocity is a vector and we take the conjugate
complex value. S can be any area. Then Pa is the acoustic power through that area.
If we combine formula 1 and formula 2 under the assumptions of uniform velocity (pistonic, v = 1)
and S being the cross-section at the throat then this would yield for the radiation impedance: 

Z a = 1

Sth
2⋅∫
Sth

p dS (3)

hence, the lumped radiation impedance at the throat would be proportional to the mean-value of the
pressure, if the horn is excited by a uniform acoustic velocity. This condition can be easily satisfied
inside a simulation algorithm. However, for a measurement the uniform velocity condition would be
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more difficult to achieve, especially at frequencies where the wavelength is small compared to the
dimension of the throat. 
Having available the impedance Za one can calculate the acoustic power of the piston mode of the
horn. Its real part is proportional to the acoustic power radiated into the far-field:

Pa = 1
2
⋅Za⋅|v|

2⋅S2 (4)

One can show that the lumped acoustic radiation impedance approaches always a certain value
asymptotically at high frequencies, which is

Z ao = ρ c
Sth

(5)

Formula 5 can be used to normalize the radiation impedance, so that the real part of any curve
would approach the value of one at high frequencies. The imaginary goes to zero.

Figure 2: Calculated normalized lumped radiation resistance at the throat of 
example horn as shown in figure 1.

PAFEC red and AKABAK blue.

Figure 2 shows the result of the calculation of formula 3. Displayed is the real part of the normalized
lumped radiation impedance at the throat of the horn if excited by uniform driving velocity (piston-
mode). The normalization is done by applying formula 5, hence the curves should approach the
value  of  one  at  high  frequencies.  The  curves  of  Figure 2 can  be  regarded  as  a  transmission
characteristic and, hence, have a high-pass character. The stop-band is at low frequencies below
approximately 500 Hz. At high frequencies the radiated power will follow the spectrum curve of the
velocity at the throat.  Between 500 Hz and 3 kHz the horn radiates selectively.  For example at
900 Hz the radiated sound power would be more than twice than at high frequencies. At 1.2 kHz the
transmission  is  strongly  attenuated.  These  fluctuations  could  be  altered  by  changing  the  horn
geometry. 
In this paper we want to draw the attention to the fact that there are two curves which are almost
identical. The red curve is the result of the PAFEC-simulator whereas the blue curve results from
the AKABAK-simulator. These two software tools calculate the same response of the device under
test.  Their  results  are  almost  identical  although the internal  working of  these software tools  is
different. 

4 MEASUREMENT

For the measurement of the directivity the horn is driven by a compression driver. The exit of its
phase plug has a diameter of 12.7 mm which fits perfectly to the throat diameter of the waveguide.
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In this paper we focus on the normalized directivity. The normalization hides the influence of the
properties of the driver. Hence, there is no need to describe the compression driver in detail. The
response is linear because adjusting the drive voltage did not affect the directivity pattern.

Figure 3: Directivity measurement set-up

The horn is fitted into a rotatable baffle of size 910 x 600 mm as shown in figure 3. The directivity is
the sound pressure in the far-field at various position of equal distance between the microphone
and the center of the mouth. The distance of the microphone is d = 700 mm. The baffle is rotated in
the horizontal plane in 5 deg steps. The other dimension of rotation comes from a rotation about the
on-axis.  In  this  way  a  whole  so-called  balloon  directivity  measurement  could  be  performed.
However,  in  this  paper  we  regard  only  the  polar  measurement  of  the  horizontal  plane
(azimuth = 0 deg) and of the vertical plane (azimuth = 90 deg).   

 

Figure 4: Frequency-directivity contour plot of example horn in 
the horizontal plane (linear walls)

Figure 4 displays the measurement of normalized sound pressure level taken at 19 microphone
positions in a regular angular range between 0 deg to 90 deg. The map is mirrored to display the
whole  range  from  -90 deg  to  90 deg.  The  colored  contours  range  from  -50 dB  to  0 dB.  For
normalization each spectrum of the sound pressure is divided by the spectrum in on-axis direction
(0 deg). The fine outline displays the contour at -6dB which is also called the beamwidth curve. At
low frequencies the horn should radiated almost omni-directional. The slight deviations are caused
by diffraction of the finite baffle and other insufficiency of the measurement situation. 
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Figure 5: Frequency-directivity contour plot of example horn in 
the vertical plane (curved walls)

Figure 5 shows the directivity in the vertical plane. In comparing the plot to the one of figure 4 it is
obvious that the beamwidth is broader. This is likely caused by the smaller aperture due to the
bumps inside the horn.

4.1 Comparison of Directivity Calculations

Both simulation applications are able to calculate the sound pressure at the same locations as used
for the measurement. The virtual microphone is placed at constant distance d = 700 mm from the
center of the horn mouth. Starting at the on-axis direction calculations are done at various angles in
the horizontal and vertical planes. The angular distance between the positions is 5 deg.

Figure 6: Directivity in horizontal plane (linear walls)
PAFEC red and AKABAK blue

at frequencies  2k Hz, 5 kHz, 8 kHz

Figure 5 shows the angular distribution of the sound pressure level in the horizontal plane. The
polar-plot  shows  curves  at  2 kHz,  5 kHz  and  8 kHz.  At  2 kHz  the  horn  radiates  almost  omni-
directional. At 5 kHz beam-forming starts. At 8 kHz radiation to the side is attenuated and most
energy is radiated on-axis. The red curve is the result of the PAFEC-simulator and the blue curve is
the result of the AKABAK-simulator. The plot demonstrates the similarity of the calculation results. 

Figure 7: Directivity in horizontal plane (curved walls)
PAFEC red and AKABAK blue

at frequencies  2k Hz, 5 kHz, 8 kHz
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Figure 5 shows the overlay of the simulated curves in the vertical plane. The broader pattern is
caused by the bump which yields a constricted aperture.

4.2 Comparison of Measurement and Simulation

Figure 8: Directivity in horizontal plane (linear walls)
measured versus simulated

at frequencies  2k Hz, 5 kHz, 8 kHz

Figure 8 demonstrates an overlay of simulated and measured directivity curves in the horizontal
plane which curves are predominantly caused of the linear walls of the horn. 

Figure 9: Directivity in horizontal plane (curved walls)
measured versus simulated

at frequencies  2k Hz, 5 kHz, 8 kHz

Figure 9 shows an overlay of simulated and measured curves in the vertical plane. 
There is a good agreement between the simulated and the measured results. The deviations close
to 90 deg are due to the fact that for the measurement the infinite baffle is finite after all.

5 MODELING FOR SIMULATION

The horn is mounted with its mouth flush in an infinite baffle. The infinite baffle is reflecting and its
boundary condition means that the component of the acoustic velocity which is normal to its plane
should be zero everywhere. The Sommerfeld radiation condition must be satisfied, to ensure that
the pressure field in the half space consists of outgoing waves. 

5.1 Simulation Methods and Subdomain Modelling

Many simulation  methods  are  used  in  acoustics  including  finite  difference,  finite  volume,  finite
element (FEM) and boundary element (BEM). In the current work FEM and BEM simulations are
used. Each of these methods has strengths and weaknesses and it is consequently sometimes
beneficial to split the acoustic domain into subdomains. 
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Figure 10: Subdomain modelling.
Left: Splitting at mouth of horn.

Right: Splitting at hemispherical surface

Two such decompositions are shown in figure 10. Finite difference and finite volume approaches
are obtained directly from the Helmholtz equation,  using differencing operations to approximate
derivatives. The finite element method is also closely related to the underlying differential equation,
which is multiplied by a weighting function and integrated by parts. The domain is decomposed into
small elements such that the pressure can be assumed to vary as a linear combination of some
suitable basis functions, e. g. low order polynomials, within each element. Applying the Galerkin
method produces the FEM linear equations. The boundary element method attempts to solve a
derived  integral  equation,  using  a  set  of  local  basis  functions  on  the  bounding  surface  of  the
acoustic volume; within the domain itself the solution of the Helmholtz equation is ensured by the
properties of the Green’s function. Only FEM and BEM are considered further, as they are used for
the results in this study, see also for example [4] and [5]. Both methods produce a set of linear
equations which are solved to determine the pressure at the nodes in the model. For FEM a large
set of sparse equations are produced, as nodes are required on elements throughout the volume.
For BEM a smaller dense set of equations is produced from the nodes on the surface elements. In
both cases the element size has to be small enough to adequately represent the pressure variation,
which in turn is usually related to the acoustic wavelength. Analysis at higher frequencies requires
smaller  elements,  more  nodes  and  hence  has  greater  computational  requirements:  CPU time,
memory and disk space. 
The surface of  the horn has a  sharp fold,  particularly  near  the throat,  such that  the radius  of
curvature  is  smaller  than  the  element  side-length  which  is  needed  from  frequency-based
considerations. There is hence a concern that the geometry may not be adequately represented.
This can be checked using mesh convergence.
The geometry and boundary conditions of the idealized problem have two planes of symmetry. It is
thus possible to reduce the problem size by using a quarter model. All the simulations in this paper
were using quarter models. 

5.2 AKABAK

The AKABAK simulator [1] calculates the acoustic field inside the horn and in front of the baffle with
the help of the boundary element method. The calculation of the Helmholtz Integral is usually a two
stage process. Firstly, one has to solve for certain unknown parameters of the integral. If available,
one can commence with the calculation of the observation points. In order to solve for the unknown
parameters one divides the surface of the acoustic boundary into small elements. Typically, the
mesh-density needs to be found experimentally, one only knows that the result becomes exact with
infinitely  small  elements.  Otherwise  we get  an  approximation.  Because  only  surface  values  of
pressure and velocity are to be integrated, the mesh need to be of two dimensions only [3].
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5.3 Subdomain Modelling

There exists a special Green-function which satisfies automatically the condition of zero normal
velocity on the infinite baffle plane. Hence, there is no need to mesh this boundary. However, this
function would be valid only for boundary elements which are in or in front of the baffle.  

Figure 11: Subdomain modeling

If  there  are  acoustic  boundaries  behind  the  infinite  baffle  the  calculation  of  the  acoustic  field
becomes more complicated. As our horn ends in the plane of the baffle all walls of the horn are
behind the infinite baffle. The trick to be applied consists of dividing the radiation domain into two
subdomains as sketched in figure 11. In-between one creates an interface where at any point there
is guarantied a continuity of parameters. The interface is acoustically transparent. On its surface the
pressure of subdomain 1 is equal to the surface pressure of subdomain 2. Likewise, should the
acoustic velocity be equal. Here we consider the velocity-component normal to the plane of the
interface. The negative sign comes in because one regards the vectors pointing into the subdomain.

5.4 Driving

The  specified  boundary  condition  is  concerned  only  with  the  surface  velocity.  The  reflecting
boundaries feature a zero normal velocity. However, the cross-section at the throat of the horn has
an imprinted velocity. This motion is specified here to be uniformly distributed and simply of value
one, as labeled in figure 11 by velocity vd. The surface pressure is the parameter of solving. 

5.5 Meshing

The geometry of the acoustic boundary is meshed with the help of GMSH [3], which is an external
meshing tool specialized for producing elements for the boundary and finite element analysis. Only
a 2D-mesh needs to be produced as we consider only the surface. The imported mesh is then
refined by AKABAK to make sure all elements are smaller than a specified edge length. For the
shown simulation a mesh of 1906 triangles was used for the boundaries of the horn and 1040 for
the interface. We assume a constant pressure over each element. Experimentation of varying the
mesh-density  showed that  results  could be regarded sufficiently  accurate up to  a frequency of
10 kHz.   
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5.6 PAFEC 

Two modeling strategies were employed to analyze the baffled horn in PAFEC VibroAcoustics [2]. 
In the first  approach the subdomain splitting of figure 10-left  was used with 10-noded quadratic
tetrahedral acoustic finite elements used in subdomain 1 and a Rayleigh integral boundary element
composed of  6-noded quadratic  triangles.  The model  BEM1 had 55096 acoustic  finite  element
degrees of freedom and 2453 acoustic boundary element degrees of freedom. Based on a criterion
of 3 quadratic elements/wavelength should be valid up to 20 kHz, however because of the small
radius  of  curvature  on  the  “fold”,  the  size  of  elements  may  perhaps  not  have  adequately
represented the geometry. In many situations, where there is not constricted geometry, deviations
by distances small compared with the acoustic wavelength should not significantly affect the results.
To confirm this, a finer mesh density model BEM2 was run. This had 339045 acoustic finite element
degrees of freedom and 9212 boundary element degrees of freedom, should be valid to 40 kHz and
was much closer the geometry in the problematic area of the sharp fold near to the throat. 

Figure 12: Throat impedance computed by method BEM1 & BEM2

Figure 12 compares the throat impedance for the two models. The agreement is good. BEM2 is
used as a reference standard below in figure 14. 
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Figure 13: Throat impedance computed by WEE1 & WEE2

In the second approach the subdomain splitting was as in figure 10-right. Acoustic finite elements
were used in subdomain 1 extending from the throat to a hemispherical surface and wave envelope
elements were used in subdomain 2 for the remainder of the half space. Wave envelope elements
are similar to finite elements but extend out to infinity. The basis functions are outward traveling
waves, monopole, dipole, etc.  A wave envelope element based approach can be faster than a
BEM-based approach, but the accuracy is affected by the radius of the spherical surface at the
interface between the subdomains and the number of  terms used for  outward traveling waves
(= radial order). Model WEE1 had the hemispherical surface extending out to 0.072 m and had
radial order 2 and a total of 173915 acoustic degrees of freedom. Model WEE2 had a hemispherical
radius of 0.102 m, radial order 6 and a total of 229368 acoustic degrees of freedom. Both meshes
were valid to 20 kHz, based on the 3 quadratic elements/wavelength criterion. Figure 13 compares
throat impedances for WEE1 & WEE2.

Figure 14: Throat impedance computed by BEM2 & WEE2
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Figure 14 compares the models BEM2 & WEE2. The model WEE1 becomes less accurate at higher
frequencies. It is concluded that a wave envelope element approach can produce accurate results
up to high frequency, but it is necessary to take care with the hemispherical radius and radial order.

6 FURTHER WORK

We would like to extend the work to model the electro-dynamic compression driver so we can
compare absolute sound pressure values of measurement and simulation. In that scenario AKABAK
would model the compression driver with the help of the lumped element method whereas PAFEC
would use the finite element method as a modeling algorithm. 
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