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1 INTRODUCTION 

The Acoustic Centre (AC) of a loudspeaker is an oft discussed property, especially when considering 
the geometrical point of rotation for polar or balloon measurements. It is defined in ANSI S1.1-2004 
as “the position of the virtual point source from which sound pressure varies inversely [with] distance” 
and in IEC 61094-3-2016 as “the point from which […] spherical wavefronts […] appear to diverge”. 

This seemingly simple definition has, however, proven surprisingly slippery and difficult to apply in a 
quantified way to a broad range of sources over a wide frequency range. When applied to 
loudspeakers, the literature can largely be split as attempting to explain either low or high frequency 
AC trends, though some rather causal discussion conflating one with the other also appears. 

At low frequencies, wavelength is much larger than cabinet size and radiation close to omnidirectional. 
Mathematically, one is therefore considering a source that is almost exactly equivalent to a monopole. 
This area of study for loudspeakers stems mainly from the ideas of Vanderkooy1. It acknowledges 
that higher-order directivity terms may exist, but only considers the dipole term to potentially be 
significant. Thus, it focuses on finding an AC that zeroes that, leaving a pure monopole. Vanderkooy’s 
2006 paper presents some quite sophisticated theory but only demonstrates a relatively simple 
measurement approach based on the pressure at two positions. A recent paper by Bellow and 
Leishman2 closes that gap by defining AC based on ‘dipole-to-monopole moment ratio’, which allows 
Vanderkooy’s concept to be tested more rigorously on a set of theoretical source problems and 
applied to a measured test case. Closely related ideas appear in literature on microphone calibration 
(see review in ref. 2) but the small transducer size there means they apply to much higher frequencies. 

For loudspeakers at higher frequencies, geometric of features of the cabinet (e.g., loudspeaker cones 
and/or horns) become large with respect to wavelength and can achieve significant pattern control. 
Radiation here can be far from omnidirectional, yet at sufficient distance from the loudspeaker the 
wavefronts are still spherical, and pressure still decays inversely with distance. This is a key difference 
with the low frequency methods above: they are designed to be applied in the nearfield but at high 
frequencies quasi-far-field measurement is assumed. The setting of AC at high frequencies appears 
to mainly be done quite empirically, with users often choosing it based on known transducer positions. 
But it is also clear that measuring based on a convenient point of rotation will produce incorrect results 
unless a complex, i.e., with phase, correction is employed3. 

To bridge this gap, a framework is required that spans both these paradigms. Bellow and Leishman2 
agree, stating that “the need remains for a more consistent definition of the acoustic centre, applying 
to all sources and generalizing to all frequencies”. As indicated above, this requires that an AC can 
be found for higher-order sources with non-monopole directionality. Vanderkooy1 also acknowledged 
this limitation and wrote that his “low-frequency acoustic center concept does not apply to 
loudspeakers that have a purely dipolar or cardioid-like polar pattern […, since] no choice of origin 
can make such a transducer omnidirectional”. He also noted that “for a [dipole] loudspeaker, […] it is 
perhaps possible to define an origin which reduces the quadrupole term to zero, so that its dipole 
character is clearer […; an] acoustic dipole center. This rather esoteric concept is not pursued any 
further”. This paper explores these concepts – including cardioid loudspeaker optimisation – and will 
show “esoteric” results such as optimal acoustic centres for dipole and/or multipole expansion. 
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1.1 Spherical Harmonic and Spherical Basis Functions 

A framework that unites both these frequency ranges is the increasingly prevalent one based on 
Spherical Harmonic (SH) functions. This was first suggested for loudspeaker balloon measurements 
by Angus and Evans in 19984, but has been cemented into the loudspeaker measurement psyche 
more recently due to it being the basis of the ‘holographic’ nearfield measurement approach used by 
the Klippel Near Field Scanner5. Notably, this allows the separation of incoming and outgoing sound, 
hence measurements are possible in non-anechoic environments (subject to conditions). The SH 
framework has also gained popularity due to its compatibility with virtual acoustic simulations6–9. 

On a sphere, SH functions form an orthogonal set equivalent to the harmonic terms used in a Fourier 
series. They are, therefore, an effective way of interpolating and/or encoding loudspeaker balloon 
data, as Angus and Evans suggested4. But because the acoustic waves must satisfy the Helmholtz 
equation, the radial function can be deduced from the angular SH function and the wavenumber, 
leading to what are sometimes called Spherical Basis (SB) functions in the literature9. These are 
rather more powerful, since they are what allows incoming and outgoing sound to be separated5,10. 
They are also highly compatible with current approaches in loudspeaker measurement because the 
radial functions become a scaled version of a monopole in the high frequency or far-field limit. Thus, 
the ‘complex point source’ model11 is simply a far-field approximation to the SB framework. 

SB functions have additionally been shown to satisfy further orthogonality conditions when utilised 
with a metric called ‘cross-intensity’12,13. Notably, these apply over a surface of arbitrary shape, 
debunking the common misconception that SH data can only be measured with spherical microphone 
arrays. This does, however, require surface-normal particle velocity or pressure gradient data, which 
is only available with intensity probes. It is used herein to obtain SB coefficients. Note that the Klippel 
Near Field Scanner5 already allows measurement in non-spherical regions (the ones it uses are 
believed to typically be closer to cylindrical) but this is achieved via numerical matrix inversion. In 
contrast, the method used herein is a forward method based on orthogonality with no matrix inversion 
required. But even if an algorithm involving matrix inversion is chosen (this does, for example, give 
increased flexibility over measurement positions), it is anticipated that the orthogonality property in 
ref. 12 should be able to inform signal processing schemes that improve matrix conditioning. 

The SB representation displays the trend exploited by Vanderkooy1 and Bellow and Leishman2 for 
monopoles, that translation to a sub-optimal expansion point (AC) creates additional components of 
higher orders6,7. Klippel et al5 discuss how an accurate AC is required to have the SB coefficients 
converge sufficiently to give acceptable accuracy, and implement an adaptive adjustment to find this. 
These properties of the SB expansion naturally suggest the following definition for the AC: 

The Acoustics Centre is the point at which the Spherical Basis function coefficients converge 
most rapidly with respect to source order, or which gives minimum error for a fixed source order. 

This definition naturally extends the AC concept to directional loudspeakers, since one can search 
for an AC that optimally captures the directionality of the sound source under test without bringing in 
higher orders of SB functions unnecessarily just to explain translation relative to a sub-optimal 
expansion point. This idea has already seen some exploration in the literature, e.g., in refs. 6–8, there 
motivated by finding the AC that allows optimal encoding of measured musical instrument directivities. 

The word “search” here is a disadvantage of the SH-based approach. A key advantage of the method 
of Vanderkooy1 and the more recent extension by Bellow and Leishman2 is that, by restricting the 
analysis to zeroth and first order terms, a closed-form expression can be found to compute the AC 
from measurements at other positions. It is notable that ref. 2 does include a section on SB functions, 
but this is only to incorporate them into their monopole / dipole moment framework and remains limited 
to centring monopoles. Once the AC concept is extended beyond this zeroth order, closed form 
expressions are not forthcoming, and a numerical search becomes necessary. Bellow and Leishman2 
suggest that this is computationally expensive, though in the research herein it was mostly not seen 
to be; certainly it was insignificant compared to the time and effort required to measure such datasets 
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in the first place. A bigger issue is whether the search finds the global minimum. Shabtai and 
Vorländer8 state that the search space is ‘convex’ – and therefore ideal for standard optimisers such 
as ‘steepest descent’ – only when “employed on sources with low-order radiation patterns”. Similar 
results to this were found herein, and random restarts were used to mitigate the effect where seen. 

Choice also arises over what metric should be minimised by the search. The majority have worked 
directly from the set of encoded SB coefficient via ‘centre of mass’ type statements7, though Deboy 
and Zotter6 and Shabtai and Vorländer8 also proposed statements that aim to discriminate based on 
the phase of the reconstructed pressure field. This paper differs in that it uses metrics based on the 
residual of the sound field reconstructed from the SB coefficients, compared to the original measured 
data. In the infinite order limit, this is equivalent to computing metrics directly on the SB coefficients. 
But when analysis is truncated to finite orders – as it always is in practice – there are differences. 
Essentially this approach studies convergence against a ground truth, whereas metrics based solely 
on SB coefficients only capture relative self-convergence. Since the measured ground truth data is 
available, this seems a good choice, though it does incur higher computational cost. 

1.2 Paper Outline, Methodology, and Experimental Context 

Section 2 reviews the spherical harmonic model of acoustic sources. Section 3 then presents the 
metrics that will be used for the AC search and characterises them on analytical multipoles. Section 
4 applies this framework to a single driver sealed axisymmetric loudspeaker, investigating how the 
AC moves with frequency and the effect of an obstruction. Section 5 then considers the optimisation 
of a dual driver cardioid loudspeaker, finding the 1st order AC at each frequency that enables optimal 
cardioid directivity. Finally, section 6 draws conclusions and identifies avenues for future research. 

The results presented in this paper are all simulated and use axisymmetric geometries, as was done 
by Vanderkooy1. A difference is that he used axisymmetric BEM whereas here axisymmetric FEM 
was employed, with a PML region beyond the radius of the measurement points. This choice was 
simply because the software used – COMSOL Multiphysics v6.1 – does not currently implement 
axisymmetric BEM; had it done then BEM would have been similarly suitable. Matlab LiveLink was 
used to extract data from COMSOL. This was postprocessed in Matlab and then returned to COMSOL 
either to produce AC position overlays or combine datasets, as was necessary in section 5. 

Axisymmetric models are beneficial to use as a testbed as they are far more computationally efficient, 
since only a cross-section needs to be meshed. They also simplify the search process since the AC 
must lie on the axis of symmetry, hence 𝑧 is the only unknown coordinate. This simplifies presentation 
of results too. Searches were performed that included an off-axis search space to validate that the 
algorithm converged to the correct on-axis position, but these are not included herein for brevity. 

Furthermore, precise characterisation of axisymmetric loudspeakers is of genuine practical interest 
in sound field control applications. And when performing laboratory measurements or validating room 
acoustic models, precise knowledge of the incident field is required which in turn requires precise 
characterisation of the source9. The SB representation is the most compact way to do this, and the 
number of non-zero coefficients is square-rooted when the source is axisymmetric, compressing the 
source description and expediting translation and rotation operations. 

For this reason, a prototype axisymmetric loudspeaker was designed and constructed. It is shown in 
fig. 1. The bass stage, which the simulated test case in section 5 is based on, features two 210mm 
diameter woofers in a 600mm long, 260mm diameter and 5mm thick Perspex tube, lined with wadding 
to damp resonances. The baffles and internal bracing structure are built from 18mm plywood. The 
two drivers share a common chamber due to the efficiency gains Cheer demonstrated this design to 
possess14. These are fed by separate amplifier channels, meaning any combination of monopole or 
dipole can be achieved. The rear plate is both for practicality of mounting and to discourage rearward 
directivity from that driver at higher frequencies. The objective in section 5 is to find the relative 
amplitude and phase of the drive signal to each loudspeaker to achieve optimal cardioid directivity. 
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The front mid-hi stage is not considered in this paper but is of relevance since the vision was that it’s 
AC might align with the AC of the bass stage at the crossover frequency, which is expected to be 
slightly in front of the front woofer at that frequency. Section 4 also investigates the effect of this 
obstruction on the AC of the bass stage, notably whether its presence moves the AC forward or back. 

2 SPHERICAL HARMONIC AND BASIS MODEL FOR SOURCES 

Consider an acoustic field radiating outwards from a time-harmonic source with frequency 𝑓 Hz. This 

can be represented by a weighted sum of outgoing spherical basis functions 𝐻𝑚,𝑛
out  as: 

𝑝(𝐫, 𝜔) = ∑ ∑ 𝑏𝑚,𝑛(𝜔, 𝐫0)𝐻𝑚,𝑛
out (𝐫 − 𝐫0, 𝜔)

𝑛

𝑚=−𝑛

∞

𝑛=0

. (1) 

Here 𝑝(𝐱, 𝜔) is the complex (with phase) pressure amplitude at position 𝐱 and angular frequency 𝜔 =
2𝜋𝑓. 𝑏𝑚,𝑛 is a set of coefficients that describe the radiation from the source and 𝐫0 is the expansion 

point, which in the context of this paper can be thought of as the trial AC. 𝐻𝑚,𝑛
out  is defined as: 

𝐻𝑚,𝑛
out (𝐫 − 𝐫0, 𝜔) = 𝑌𝑛

𝑚(𝛽, 𝛼)ℎ𝑛
out(𝑘𝑟). (2) 

Here ℎ𝑛
out is an outgoing spherical Hankel function, being a spherical Hankel function of the first kind 

if e−i𝜔𝑡 time variation is assumed (or of the second kind if e+i𝜔𝑡 is assumed). 𝑘 = 𝜔 𝑐⁄
0 is wavenumber, 

with speed of sound 𝑐0, and radius 𝑟 = |𝐫 − 𝐫0|. 𝑌𝑛
𝑚(𝛽, 𝛼) is a spherical harmonic function defined as: 

𝑌𝑛
𝑚(𝛽, 𝛼) = (−1)𝑚√

(2𝑛 + 1)

4𝜋

(𝑛 − |𝑚|)!

(𝑛 + |𝑚|)!
𝑃𝑛

|𝑚|(cos 𝛽)ei𝑚𝛼. (3) 

Here 𝑃𝑛
𝑚 is an associated Legendre function. 𝛼 and 𝛽 are the 

azimuth and polar angles respectively, whose relationship to 𝐫 

and 𝐫0 is depicted in fig. 2. Note that all the simulations herein are 
performed in so called ‘front-pole’ orientation, that is, the 
loudspeaker points in the +𝑧 direction where 𝛽 = 0. 

Note that because the cases considered are all axisymmetric, all 
terms with 𝑚 ≠ 0 will have 𝑏𝑚,𝑛 = 0 and contribute nothing. All 

terms with 𝑚 ≠ 0 in eq. 3 therefore effectively vanish, so the 

pressure field 𝑝 becomes independent of 𝛼, and 𝑃𝑛
|𝑚|(cos 𝛽) is 

replaced by 𝑃𝑛(cos 𝛽), a much simpler Legendre polynomial. 

Notably 𝑃0(cos 𝛽) = 1 and 𝑃1(cos 𝛽) = cos 𝛽, making it clear that 

𝑏0,0 is the monopole coefficient and 𝑏0,1 is the dipole coefficient. 

Figure 1: Prototype axisymmetric loudspeaker. a) Full concept including front mid-high stage.  
b) Bass-stage of prototype, as inspires the test case in section 5, in the University of Salford 
Acoustic Laboratory’s anechoic chamber mounted on their Four Audio ELF measurement robot. 
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Extrapolating Vanderkooy’s 
definition of low frequency AC 
from monopoles to order-
limited sources with the form 
of eq. 1, the true AC for this 
frequency 𝐫c(𝜔) is defined as 
being the expansion point that 
leads to the lowest value 𝑁 for 

which all 𝑏𝑚,𝑛 = 0 for 𝑛 > 𝑁.  

As already mentioned, having 
𝐫0 ≠ 𝐫c gives other coefficients 
more energy than necessary. 
Figure 3 shows this for three 
analytical source types. For 
the monopole (top), 𝑏𝑚,𝑛 = 1 

for 𝑚 = 𝑛 = 0 and are 0 other-
wise. At zero translation, this 
is seen in the reconstructed 
coefficients, but elsewhere all 
are used to explain the 
translation, gaining increasing 
amplitude as the translation increases. The dipole (middle) shows a similar trend except now it is the 
𝑛 = 1 curve that is constant, and the others – including the 𝑛 = 0 curve – become significant only 

when translation is involved. Finally, the bottom plot shows a 2nd order multipole for which 𝑏𝑚,𝑛 ≠ 0 

only for 𝑚 = 0 and 𝑛 ≤ 2. Those three curves remain significant everywhere, but the others are only 
significant once translation is involved. Looking at these it appears that the coefficients contain 
features – a defined minimum – that can be used to match the expansion point to the AC. 

2.1 Encoding of measured data to spherical basis coefficients 

The standard method for obtaining the SB coefficients 𝑏𝑚,𝑛 is to measure pressure at a set of points 

over a sphere of radius 𝑟meas. On this, the pressure field can be interpolated using SH functions and 

a set of coefficients 𝑐𝑚,𝑛 as follows, which is the approach suggested by Angus and Evans4 in 1998: 

𝑝(𝑟meas, 𝛽, 𝛼, 𝜔) = ∑ ∑ 𝑐𝑚,𝑛(𝜔, 𝑟meas)𝑌𝑛
𝑚(𝛽, 𝛼)

𝑛

𝑚=−𝑛

∞

𝑛=0

. (4) 

Here 𝑐𝑚,𝑛 has been stated to a function of 𝑟meas as well as 𝜔, since the values obtained will depend 

on measurement radius. These coefficients can be found from the measured pressure field by: 

𝑐𝑚,𝑛(𝜔, 𝑟meas) = ∫ ∫ 𝑝(𝑟meas, 𝛽, 𝛼, 𝜔)𝑌𝑛
𝑚(𝛽, 𝛼)∗ sin 𝛽 𝑑𝛽𝑑𝛼

𝜋

0

𝜋

−𝜋

. (5) 

Here the well-known SH orthogonality over a sphere property has been exploited. By comparing eq.  
4 to eq. 1, it is evident that the radius-independent coefficients 𝑏𝑚,𝑛 can be found from 𝑐𝑚,𝑛 by: 

𝑏𝑚,𝑛(𝜔) = 𝑐𝑚,𝑛(𝜔, 𝑟meas) ℎ𝑛
out(𝑘𝑟meas)⁄ . (6) 

The centre of expansion 𝐫0 is, however, locked to the geometric centre of the measurement sphere. 
To search for the AC, translations can be applied in the SB domain7,9. But this requires measuring 
with a far higher order than the source is expected to possess, since all the translational ‘smudging’ 
over SB order, as shown in Figure 3, must be captured. It is expected that the reverse translation will 
then have a ‘sharpening’ effect at the correct AC, if sufficiently high measurement order was used. 

Figure 3: Effect of translation between expansion point and true AC 
on 𝑏𝑛,0 coefficients. a) monopole, b) dipole, c) 2nd order multipole. 

a) 

b) 

c) 
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2.2 Method based on ‘Cross-Intensity’ 

Limitations of the method above are that: i) the measurement points must be on a sphere, and ii) that 
the measurements must be performed in an anechoic environment. This latter restriction is often 
expected, but the success of the Klippel Near Field Scanner5 has demonstrated that it is not essential.  

The second restriction arises because the encoding in eq. 4, which is purely pressure-based, cannot 
discriminate between waves that are incoming and outgoing, hence room reflections cannot be 
removed. Adding co-located measurements of particle velocity – or equivalently, pressure gradient – 
allows discrimination between waves that are incoming and outgoing, hence avoids the issue. The 
version of this based on ‘cross-intensity’ and presented in ref. 12 is also valid for non-spherical 
measurement surfaces because it is derived via Green’s theorem. It is most compactly stated as: 

𝑏𝑚,𝑛(𝜔) = −i𝑘 ∬ [𝑝(𝐫, 𝜔)
𝜕𝐽𝑚,𝑛

∗

𝜕𝑛
(𝐫 − 𝐫0, 𝜔) − 𝐽𝑚,𝑛

∗ (𝐫 − 𝐫0, 𝜔)
𝜕𝑝

𝜕𝑛
(𝐫, 𝜔)] 𝑑𝑆

𝑆

. (7) 

Here 𝑆 is the measurement surface and 𝐽𝑚,𝑛 is a regular spherical basis function, which is defined the 

same as 𝐻𝑚,𝑛
out  in eq. 2 except that the radial function is a spherical Bessel function. 𝜕 𝜕𝑛⁄  is shorthand 

for �̂� ∙ ∇, where �̂� is an inward-pointing unit vector that is normal to 𝑆 at 𝐫 and the gradient ∇ is taken 

with respect to 𝐫. An asterisk indicates complex conjugation. With this statement, the user is also free 
to choose 𝐫0, hence an AC search can be performed with no translation operations necessary. If the 

measurement surface 𝑆 is spherical, and 𝐫0 is at its centre, then this is equivalent to the 2010 method 
of Melon et al10. Note that in practice, all such boundary integrals, including the one in eq. 5, will be 
approximated by a set of point measurements that are appropriately weighted and then summed. 

2.3 Far-Field Extrapolation 

The radius 𝑟meas at which measurements are taken in eq. 5 is typically rather arbitrary, usually being 
defined by the size of the measurement space available, and is unlikely to match the listening distance 
of interest. There is, therefore, a need for a radius-independent description of directivity. The 𝑏𝑚,𝑛 

coefficients give this, but in a form that is not familiar to most practitioners in the audio industry.  

A solution is to look at directivity in the far-field limit. This is especially appropriate for concert sound 
use, where distances are great, and it is compatible with high-frequency AC concepts. It is defined: 

𝑝ff(𝛽, 𝛼, 𝜔) = lim
𝑟→∞

[𝑝(𝑟, 𝛽, 𝛼, 𝜔) ×
4𝜋𝑟

ei𝑘𝑟
]. (8) 

Here the term 4𝜋𝑟 ei𝑘𝑟⁄  compensates for the distance attenuation and delay experienced by a 

monopole at that distance, leading to a distance-independent quantity for sufficiently large 𝑟. It can 

be interpolated using SH functions and a set of coefficients 𝑑𝑚,𝑛 as: 

𝑝ff(𝛽, 𝛼, 𝜔) = ∑ ∑ 𝑑𝑚,𝑛(𝜔)𝑌𝑛
𝑚(𝛽, 𝛼)

𝑛

𝑚=−𝑛

∞

𝑛=0

. (9) 

In eq. 1-3, terms with different 𝑛 have difference order spherical Hankel functions ℎ𝑛
out(𝑘𝑟). These 

decay differently with 𝑘𝑟, in the nearfield (small 𝑘𝑟) especially. But for large 𝑘𝑟 the ‘large-argument’ 

approximation ℎ𝑛
out(𝑘𝑟) ≈ i−𝑛ℎ0

out(𝑘𝑟) applies, where ℎ0
out(𝑘𝑟) = ei𝑘𝑟 i𝑘𝑟⁄  is a scaled version of a 

monopole. This means that if one is far enough away from source, and/or frequency is high enough, 
then all terms in its directivity decay at the rate a monopole would. This can be employed to give: 

𝑑𝑚,𝑛(𝜔) = lim
𝑟→∞

[ℎ𝑛
out(𝑘𝑟) ×

4𝜋𝑟

ei𝑘𝑟
] = i−𝑛

ei𝑘𝑟

i𝑘𝑟

4𝜋𝑟

ei𝑘𝑟
× 𝑏𝑚,𝑛(𝜔) =

4𝜋

i𝑘
i−𝑛𝑏𝑚,𝑛(𝜔). (10) 
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Fr-field pressure can also be computed directly from the measured data via a boundary integral 
equation, so long as particle velocity – or equivalently, pressure gradient, is known: 

𝑝ff(�̂�) = −ei𝑘�̂�∙𝐫0 ∬ e−i𝑘�̂�∙𝐫 [i𝑘�̂� ∙ �̂�𝑝(𝐫) +
𝜕𝑝

𝜕𝑛
(𝐫)] 𝑑𝐫

𝑆

. (11) 

Here �̂� is a unit vector pointing in the direction of evaluation. Data computed this way will be used as 
the reference when calculating the reconstruction error in the far field. 

3 ACOUSTIC CENTRE FOR THEORETICAL MULTIPOLES 

In this section a ‘measured’ pressure field 𝑝M is simulated using eq. 1 with its 𝑏𝑚,𝑛 coefficients set to 

specific values. Eq. 7 is then used to recover those coefficients, but with a different trial AC 𝐫0, and 

the normalised error in the reconstructed pressure 𝑝R is computed. Reconstruction error is quantified 

by the RMS of the residual 𝑝M − 𝑝R  normalised by the RMS of the ground truth pressure field 𝑝M: 

𝐸{𝑝M, 𝑝R} = √〈|𝑝M − 𝑝R|2〉 〈|𝑝M|2〉⁄ . (12) 

Here 〈 ⋯ 〉 is shorthand for a boundary integral of a quantity over 𝑆, as was seen in eq. 7 and 11. The 

metric is computed at 𝑟meas by comparing 𝑝M with 𝑝R computed using eq. 1. It is also computed for far 

field pressure by comparing eq. 11 applied to 𝑝M with 𝑝ff,R from eq. 9. 𝑟meas was set to 0.9m and 

pressure and its gradient were computed every 3°; these settings are used in all subsequent 
simulations too. Additionally, and here only, -40dB Gaussian ‘measurement noise’ was added. 

Figure 4 shows the results for a source with a true AC 𝐫c = [0, 0, 0.2]. It is a dipole so 𝑏0,1 = 1 and all 

other 𝑏𝑚,𝑛 = 0. The trial AC 𝐫0 was varied in the 𝑧 direction and the reconstruction error is plotted for 

both the measurement radius and in the far field. The 𝑛 = 0 AC does not converge in either case 
because it – being omnidirectional – cannot capture the dipole behaviour. The 𝑛 = 1 trend, in contrast, 
shows a distinct error minimum at the correct AC, which is encourages its use as a search metric. 
Higher order behaviour varies between near and far field pressure, with the former plateauing to form 
ever wider valleys, while the latter converges further but with minima sometimes different to the true 
AC. The latter is thought to be due to overfitting of the far field reconstruction compute using eq. 11, 
making this a less useful search metric. Pressure at the measurement radius was therefore chosen 
as the metric for the single driver loudspeaker test case in section 4. From this a further metric was 

Figure 4: Normalised reconstruction error for a 100 Hz dipole at 𝑧 =  0.2m for ‘measured’ 

pressure at 𝑟meas = 0.9m (top) and far field pressure (bottom), at various reconstruction orders 𝑛. 

a) 

b) 
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developed that can find both sound AC and order, but there is insufficient space here to report this. 
Far field pressure is used in the latter part of section 5 because far field directivity is the focus there. 

4 ACOUSTIC CENTRE FOR AN AXISYMMETRIC SINGLE 
DRIVER SEALED CABINET LOUDSPEAKER 

This first test case is based on half of the loudspeaker 
described in section 1.2 and shown in fig. 1. It is 260mm 
diameter and 300mm deep, centred with its front baffle at 
𝑧 = 0m in a 1m radius air volume bounded by a 0.25m 
thick Perfectly Matched Layer (PML), which has a scaling 
factor of 0.5 and a scaling curvature parameter of 2. 
These PML parameters are used in section 5 too. 

The geometry is shown in fig. 5. The radial slice modelled 
in COMSOL was only the right half of this – all plots have 
been mirrored for ease of interpretation. The maximum 
element size was 0.6mm, allowing 𝜆 5⁄  meshing up to 
10kHz, though results here are only shown up to 2.5kHz. 
An optional obstruction is included, to show the effect the 
coaxial mid-hi stage in fig. 1a would have on the AC. 

The metric in eq. 12 is evaluated at the measurement 
radius 𝑟meas = 0.9m, as per fig. 4a. The trial AC with the 
minimum metric value was found using a bounded 
version of Matlab’s built-in fminsearch function15.  

Figure 6 shows the minimum value of the metric, and the 𝑧 coordinate of the trial AC that gave it, 
versus frequency. It can be seen that the monopole term captures the majority of the behaviour up to 
200Hz. Above that the dipole term becomes significant, and then higher order terms from 400Hz. The 
error metric is shown for 0 ≤ 𝑛 ≤ 5 but the optimal trial AC is only shown for 0 ≤ 𝑛 ≤ 2 since for 𝑛 > 2 
the AC result is very erratic due to the search space being non-convex and having multiple minima, 
as found by Shabtai and Vorländer8. The obstruction has very little effect on error arising from only 
using the monopole term, though it shifts the zeroth-order AC back by 1.39cm on average. It’s 
presence (dashed lines) has a stronger effect on the higher-order terms, and more need to be brought 
in at a lower frequency to explain its effect. But this is all above 300Hz, which is the intended crossover 
frequency with the mid-hi stage in the real prototype, hence is not an issue for that.  

Figure 5: Geometry of single driver 
loudspeaker model 
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Figure 6: Optimal trial AC (top) and error metric minima (bottom) for the single driver loudspeaker 
for various reconstruction orders (𝑛), with (solid) and without (dashed) obstacle present. 

a) 
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Figure 7 shows the pressure field from 
the loudspeaker at 400Hz and 1kHz, 
with and without the obstruction. 
These are both above intended the  
operating frequency of the bass stage 
but are shown to allow differences to 
be seen. Optimal zeroth and first order 
AC positions from fig. 6a are overlaid. 

It can be seen that the obstruction’s 
presence has surprisingly little effect 
at either frequency. At 400Hz there is 
almost no discernible change except 
for a slight movement in the pressure 
null at the top of the figure; this phase 
lag is likely what has moved the AC 
downwards. At 1kHz there appears to 
be greater output from the version with 
the obstruction, perhaps due to 
increased radiation impedance (note 
that a prescribed velocity boundary 
condition was used in this simulation). 
Differences are seen in the near field 
of the obstacle, and a slight focussing 
effect (Arago spot) is seen above it. It 
was anticipated that this might move 
the AC forward, but it has not. 
 

5 OPTIMISATION OF A CARDIOID LOUDSPEAKER 

This section presents a model of the full dual driver loudspeaker described in section 1.2 and shown 
in fig. 1. The geometry is shown in fig. 8. The model of the acoustic exterior is largely unchanged 
except the maximum element size was doubled to 1.2mm, reducing the 𝜆 5⁄  frequency to 5kHz. The 
full 0.6m long loudspeaker is now present, including its rear plate. The front baffle has been moved 
forward to 𝑧 = 0.15m to better position it within the acoustic domain. 

A key difference is that the internal air volume of the 
cabinet is now modelled. The majority of this (green in 
fig. 8) is filled with wadding material modelled using a 
Delaney-Bazley model and a flow resistivity of 922 
Pa×s/m2. Also, the two loudspeakers are now coupled 
to simulated circuits that implement a lumped parameter 
model of their electroacoustic properties. These use the 
Thiele-Small values of the drivers used in the prototype. 
This means that both cones can move when only one 
driver is driven, an effect that occurs quite strongly at low 
frequencies in the physical prototype. 

The drive signals for the two drivers will be optimised to 
give the most cardioid directivity possible. Loudspeaker 
directivity is a function of distance, as discussed earlier. 
However, it is uncommon to hear distance mentioned in 
discussion of cardioid directivity, suggesting that this 
distance-invariant far field model is appropriate: 

Figure 7: Pressure fields radiated by the single driver 
loudspeaker at 400Hz (a&b) and 1kHz (c&d),  

with (b&d) and without (a&c) obstruction, including 
positions of zeroth (blue) and first (orange) order ACs. 

a) b) 

c) d) 

Figure 8: Geometry of dual driver 
loudspeaker model 
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𝑝ff(𝛽, 𝛼, 𝜔) = 𝑎0(𝜔) + 𝑎1(𝜔) cos 𝛽 + 𝑅ff(𝛽, 𝛼, 𝜔). (13) 

Here 𝑎0 and 𝑎1 are two frequency-dependent coefficients, the mix of which defines the first-order 

directivity: 𝑎1 = 0 produces an omni-directional pattern, 𝑎0 = 0 produces a dipole pattern, or 𝑎0 = 𝑎1 

produces a cardioid pattern. 𝑅ff(𝛽, 𝛼, 𝜔) is the ‘residual’, meaning any variation in 𝑝ff(𝛽, 𝛼, 𝜔) that isn’t 
explained by the first two terms. If the first-order model captures most variation, then this will be small. 
The search used will find values of 𝑎0 and 𝑎1 while optimising the AC to minimize the norm of 𝑅ff. 

Noting that 𝑃0(cos 𝛽) = 1 and 𝑃1(cos 𝛽) = cos 𝛽, as mentioned on page 4, it follows that 𝑎0(𝜔) =

𝑑0,0(𝜔) × √1 4𝜋⁄  and 𝑎1(𝜔) = 𝑑0,1(𝜔) × √3 4𝜋⁄ . If 𝑎0 = 𝑎1 then 𝑑0,0 = √3𝑑0,1, so that is the condition 

that will be solved for. Note that this is very similar to eq. 59 in Bellows and Leishman2, but the 
objective there is to find the zeroth-order AC, whereas here it is to optimise for cardioid directivity. Let 
us define a relative rear gain 𝛾(𝜔) so total pressure 𝑝(𝐱, 𝜔) = 𝑝front(𝐱, 𝜔) + 𝛾(𝜔)𝑝rear(𝐱, 𝜔). Noting 

the linearity of all the operations above, it can be shown that the optimal choice of 𝛾(𝜔) is: 

𝛾(𝜔) = − [𝑑0,0,front(𝜔) − √3𝑑0,1,front(𝜔)] [𝑑0,0,rear(𝜔) − √3𝑑0,1,rear(𝜔)]⁄ . (14) 

It might be anti-intuitive that far-field directivity would be affected by AC, but the 𝑏𝑚,𝑛 coefficients have 

been shown to be, thus the 𝑑𝑛,𝑚 coefficients defined from them must be too. Considering the form of 

eq. 11, it seems likely that varying the AC will only cause a phase shift, but this has a significant effect 
when the result of two drive signals is combined. For 𝑑0,0 and 𝑑0,1 alone, a phase shift could be 

achieved with drive signals. But the approach here also minimises the higher-order residual, which is 
perhaps its primary achievement. Nonetheless, it is worth noting that this case study transcends the 
AC definition of Vanderkooy, moving from finding the position where a single-input device is most like 
a monopole, to finding the AC where a dual-input device can be made most cardioid through DSP. 

Figure 9 shows the result of the optimal AC search for the front (solid) and rear (dashed) drivers when 
driven separately. This is akin to fig. 6 and the error metric is still computed at 𝑟meas. The light grey 
area indicates the space physically occupied by the loudspeaker cabinet. Notably the rear AC is closer 
to the baffle, presumably due to the presence of the plate. It can be seen from the error metric that 
both drives naturally exhibit non-monopole behaviour, likely due to the acoustic coupling between the 
drivers because they are in the same tube. It is around 200Hz that the monopole term explains most 
of the radiation, and hence the strongest rear drive signal will be required to maintain a cardioid 
directivity. Higher order terms gradually become significant above 300Hz, but this is above the 
intended crossover frequency of the design so is not of concern from that perspective. More 
significantly, there is a jump in the 1st order AC at around 280Hz due to the search space being non-
convex. This would require mitigation since discontinuities will be undesirable for drive filter design. 

Figure 9: Optimal trial AC (top) and error metric (bottom) for the dual driver loudspeaker for 
various reconstruction orders (𝑛), for the front (solid) and rear (dashed) drivers driven alone. 

a) 

b) 
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Figure 10 shows the result of the optimisation process. Metrics here are computed with eq. 12 applied 
to far-field pressure, as befits the model in eq. 13. The normalised residual (top, orange) starts small 
at low frequencies but gradually increases to a peak value of 84% at 350Hz. The optimal AC is fairly 
static at around −0.11m until that frequency. Plots of the relative rear gain in fig. 10b are smooth and 
appear suitable for implementation with digital filtering again until 350Hz, where a discontinuity 
occurs. This artefact is above the intended crossover frequency of the design, however, so is not of 
significant concern; extrapolation could mitigate for it and produce a smooth target profile for the filter. 

Figure 11 shows a polar plot of the far field normalised Sound Pressure Level (SPL) produced post-
optimisation. At 50Hz the directivity is extremely close to the ideal cardioid. At 100Hz, a slightly larger 
deviation occurs, presumably due to a growing quadrupole term. By 316Hz, the higher order terms 
are significant, and the directivity is clearly no longer cardioid and is polluted by higher order terms. 
But by this frequency the mid driver will be active also and could be used to optimise directivity too. 

6 CONCLUSIONS AND FUTURE WORK 

A directional low frequency Acoustic Centre (AC) 
concept has been proposed and demonstrated 
with three simulated case studies: one analytical 
and two numerical concerning loudspeakers. The 
metrics can be used in a search that identifies the 
AC for differing orders and frequencies. This was 
used to optimise cardioid loudspeaker directivity. 

Further work is to apply this to non-axisymmetric 
models and measured data. There is also a need 
for a process to detect the order of a source as 
well as its AC. This is challenging to do reliably as 
the latter varies with the former, and because the 
search space is often non-convex. But the gains 
to be had by a directional AC metric are worth this 
extra effort, in the author’s opinion, compared to 
the – admittedly more elegant – zeroth order AC 
methods. Achieving synergy with high-frequency 
AC methods is another long-term goal. 

Figure 11: Far field optimised SPL versus angle. 

Figure 10: Top: Optimal trial AC (blue, left scale) and far field error metric minima (orange, right 
scale) for the dual driver loudspeaker when optimised for cardioid directivity.  

Bottom: real and imaginary parts of front-to-rear relative gain function to be implemented in DSP. 

a) 

b) 
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