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1. INTRODUCTION

Studios, concert halls, control and dubbing rooms, reverberation chambers, or any place where high

quality acoustics are required, need to have a diffuse reverberant sound field. The means of

achieving this has vexed acousticians throughout history. Traditionally, plaster mouldings. niches

and other decorative surface irregularities have been used to provide diffusion in an "ad hoc“

manner. More recently diffusion structures based on patterns of wells whose depths are formally

defined by an appropriate mathematical sequence have been proposed and used [1-8].

Integer based sequences are, unfortunately, limited in their frequency response The purpose of this

paper is to present an alternative form of diffusion structure based on non integer based phase

reflection gratings. This paper will present a new method of generating such diffusers Based on

Huffman sequences. The theory. design, advantages and limitations of these structures will be

discussed and simulation results of their performance will be presented. The. paper will show that it

is possible to develop diffusing structures which have a better frequency performance than

conventional phase reflecting structures. Finally we will discuss the implication of the results for the

design of studios, performance spaces and reverberation chambers.

2. THEORY

There is a well-known theorem in both antenna theory and Fourier optics [9,10] which states:

P(sin a): % IEx(x,0)exp(—jkxsin a)dx (1)

Which can be written as:

P(sina) : 717, l Ex(x,0) exp(-—jkx sin mat/ix (2)

This can be compared with the equation:
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F(w) =15, imam—jam: .

where:

sin a = a) (a)

loc=t

Equation (3) is the well-known Fourier transform and so equation (1) can be seen to represent a
Fourier transform as well. Equation (1) therefore states that the power as a function ofsina (the
polar pattern) is related by the Fourier transform to the complex pressure distribution atthe object
radiating the sound. This'means that if we want a uniform diffusion of sound from a reflecting
surface we must have aset of complex pressures whose Fourier transform is uniform. Such a 1
requirement is met by phase reflection gratings. ‘

These gratings alter the phase of the wave front by using the different delays of wells of different
depths. They work because they perturb the phase of the wave front such that the Fourier .‘
transform of the reflected wavefront is uniform. with the possible exception of dc. To make design 1
of such sequences a little clearer, let us consider the two different types of sequences that are used
for diffusers.

 

i) Quadratic residue sequences

Well depth = ’n2 mod p where n is the set of integers 0,1 and p is a prime number. lfp
= 5 this gives a set of well depths of:

0. 1, 4, 4. 1, 0. 1. etc. (4)

So the sequence repeats with a period of 5.

ii) Primitive root sequences

Well depth = a" mod p where p is a prime and a is a suitable constant called a primitive
root. For a = 2 and p = 5 we get the sequence:

1. 2. 4. 3. 1, 2. etc. (5)

In this case we have a sequence that has a period of 4 (5-1).

At the lowest design frequency for these examples a well of depth 5 would correspond to Note

that when the frequency gets high enough so that % becomes equal to the minimum difference in

depths (1) then the surface again becomes equivalent to a flat surface.

The effect of these two sequences on the wavefront can be expressed as a set of complex rotations
of the phase. This can be expressed mathematically as:

[2 mt2

r” = e P where n and p are as defined previously (6)

for the quadratic residue sequence and:
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j2 m”
p

r,, = e where n, a andp are as defined previously (7)

for the primitive root sequence.

Schroeder [1] shows that the Discrete Fourier transform of a single version (no repeats) of the
quadratic residue and primitive root sequences are uniform. except fora reduction in the dc
component. that is. the specular direction. in the case of the primitive root sequence This is ideal
behaviour for such surfaces but as their complexity of construction. and size. increases with the
modulus most practical sequences are based on small prime numbers such as 7, 11, etc.
Therefore when a large area needs to be covered the small sequences are concatenated to form
larger areas. Indeed some products are designed to facilitate this.

A problem with the quadratic residue and primitive root sequences is that they are based on integer
sequences with a finite number of steps. This has two main effects,

- The sequence has a maximum frequency which is determined by the step size of the wells.
Because the well depths are all based on small integers the steps are in simple-integer

ratios, This means that when the step size is equal to M2 of the incident wavelength the

wavefronts reflected from the individual well depths are phase shifted by multiples of 7. and
so are reflected in phase with each other. This means that at this frequency the diffuser

behaves like a flat plate. However above this frequency the wavefronts will no longer add in
phase and so the diffuser will begin to scatter again. although there will be some reduction
in efficacy due to the finite width of the diffusion wells.

- A more subtle effect is that the diffusion performance is only specified at the discrete

frequencies determined by the maximum depth of the diffuser. Between these frequencies

the diffusion performance is poorer. although still better than a flat plate of equivalent

extent. This is due to the fact that between these discrete frequencies the phase shifts are

no longer optimum and. due to the integer relationship of the well depths. this deviation

from optimum phase occurs across the whole diffuser thus making the effect worse.

These effects are summarised in figure 1 which shows the performance of a length 5 diffuser as a

function of frequency compared with a flat plate of the same size. the lowest design frequency is
500Hz. Figure 1 shows the standard deviation, from optimum. of the diffuser as a function of

frequency and it clearly shows the effects discussed above. In particular note the fact that at

2500Hz. and its multiples, the performance of the diffuser is identical to a flat plate. At these

frequencies the diffuser acts in an identical fashion to a flat plate and thus could be called the flat-

plate frequencies of the diffuser. Also note that there are ripples in the diffusion characteristics

between these frequencies with the best diffusion occurring at the discrete frequencies determined

by the modulus and the depth. in this case at multiples of 500Hz. in between these frequencies the

diffusion performance is not as good.

3. DISCUSSION

Thus we have a problem. integer based small diffusers work well and are practical for both

construction and installation but we would ideally like the perfonnance at frequencies away from the

discrete design frequencies. to be better, Ideally, we would also like the frequency response of the

diffuser to be extend beyond the flat-plate frequencies discussed above. This cannot be achieved

using integer based sequences and so some other form of sequence which is not based on integers

must be used. A class of sequences which can be used are Huffman sequences [11].
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4. HUFFMAN SEQUENCES

The integer sequences above achieve their performance because their autocorrelation function is
an impulse, or a close approximation. Their algebraic structure, in particular their cyclic property,
allows one to work out recipes for generating sequences with the requisite autocorrelation function.
Huffman sequences use the algebraic properties of polynomials in the field of complex numbers to
design sequences with the desired autocorrelation function. The complex field is used because it is
the only non integer number system that has elements with cyclic properties. There are two main
ideas behind Huffman sequences:

- The use of the coefficients of complex polynomials, whose roots satisfy certain constraints.
as the sequence values.

- Forming the sequence values required from a selection of coefficients from two related
polynomials.

The length of the sequence is determined by the order of the polynomial and the autocorrelation
properties are determined by the roots of the polynomial. so in order to design a Huffman sequence
we need to work out the positions of the roots of the polynomials and then multiply them out to form
the coefficients, and hence the sequence amplitudes. It can be shown [] that the roots of the
polynomials must lie on a zero centred circle in the complex plane in order to achieve the requisite
autocorrelation function. This is analogous to the cyclic properties of the integer based sequences.
However the roots must not only lie on a circle in the complex plane, they must also be in specific
locations. In order to work out these locations we must examine the polynomials in more detail.

To generate a Huffman sequence, of length N+1_ we must generate two related polynomials:

V N
P=aoxN+alxN"+-~+aN_1x+aN=a0H(x—r,,) (8)

n=1

The a. represent coefficients which will ultimately form the sequence amplitudes and the r” the
roots of the polynomial P. These roots are also related to the roots of a second polynomial Q:

rn

1v_ 1Q=a0+a1x+--‘+aN_,xN l+aNxN=ao(—l)Nl—[r,,(x——) (9)
n=1

Where a1 and r,1 have the same meaning. In fact to form Huffman sequences we require the
‘

complex conjugate of Q. Q , given by:

N_ 1Q =a3 + aIx+---+a;,_lxN l+a,‘va = aX,(—l)Nl I r;(x —7) (10)
n=i n

Equation (10) is important because its roots are reciprocals of the ones in equation (8) this means
t

that if the roots of P lie on a circle then the roots of Q will also lie on a circle concentric with that of
P. They will also lie on the radial lines extending from the origin which pass through the roots of P.
This means that the two polynomials will lie on either side of the unit circle in the complex plane. as
shown in figure 2. If the roots are equally spaced. with respect to angle, around round the circle
we can also say that:
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fl _ fl" .
r”=§e( ”) and %=l{e( (11)

H N

This means we can generate the required two polynomials by generating N equally spaced roots on
the unit circle via:

(Fin)r,,=e OSnSN-l (12)

1 .
And then multiply by f to form P and — to form Q . This results in two possible root values at

I
each of N angles round the circle. In order to form the Huffman sequence it is necessary to select
one root from each angular position. That is, the final sequence is formed from a selection of roots

* N
from P and Q . There are 2 possible selections and, in principle, any selection has similar

correlation properties. Figure 3 shows the selection the selection process and figure 4 the final root
selection. In order to form the final sequence one simply has to multiply out the roots to form the
polynomial coefficients. Figure 5 shows the resulting output sequence for the root pattern shown in
figure 4. in principle this sequence could have beencomplex but by choosing the roots to be
symmetrical about the x-axis in the complex plane, complex conjugate roots. real coefficients are
assured. The aperiodic autocorrelation function of the sequence is shown in figure 6 and one can
see that it displays almost ideal properties. having only 2 small sidelobes. These correlation
properties will be maintained if the sequence is scaled up or down in amplitude.

To summarise in order to generate a Huffman sequence: .

- Choose a value for 4’ , a value of about 1.25 seems to work but other values are possible.

- Choose the length of sequence desired and generate N equally spaced roots on the unit
circle.

1 t

- Multiply by 4’ to form Pand by — to form Q .
C

.
- Randomly choose from P and Q to form the final sequence‘s roots. However if real

coefficients are required then make sure the roots chosen are symmetric about the x-axis.

- Multiply out the roots to form the final sequence.

5. DIFFUSER DESIGN USING HUFFMAN SEQUENCES

in order to design a diffuser one must assign the final polynomial coefficients to well depths. The 14

bit sequence we have been using is shown below. ‘

a”:[1.00, 0.91, —0.11, 0.61, 1.82, 0.27, ~1.15,

—0.24, —0.34, —0.21, 1.28, —0.77, 0.75, —0.82]
(13)
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As the sequences have both negative and positive values which range to greater than one we need
to normalise them into the range 0 to 1 for the purposes of diffuser design. This can be done by first
subtracting the most negative number from the sequence.

a" =[2.15, 2.06, 1.04, 1.76, 2.97, 1.42, 0,
(14)

0.91, 0.81, 0.94, 2.43, 0.38, 1.90, 0.33]

Then one divides the sequence by the maximum value to give:

a,7 =[0.72, 0.69, 0.35, 0.59, 1.00, 0.48, 0,
(15)

0.31, 0.27, 0.32, 0.82, 0.13, 0.64, 0.11]

Using this sequence we can calculate the required well depth by multiplying the maximum depth of

the sequences, determined by 3 at the lowest design frequency.

6. RESULTS

The simulated response of single and repeated length fourteen Huffman phase reflection gratings
was calculated. The width of the wells were kept constant at 4cm and the well depth corresponding
to the modulus was 34.4cm. corresponding to a lower design frequency of 500Hz.

6.1 Single Gratings

Figure 7 shows the diffusion performance, as a function of frequency, of a length 14 Huffman
diffuser, compared to a flat plate of equivalent length. It shows that the diffuser performs well and
does not suffer from either the flat plate frequency or the inter integer variation in diffusion
performance. For comparison a length thirteen quadratic residue diffuser is shown in figure 8 and
exhibits these faults.

6.2 Periodic Gratings

Figure 9 shows the diffusion performance, as a function of frequency, of a several repeats of a
length fourteen Huffman grating, compared to a flat plate of equivalent length. Here the
improvement in performance, over the quadratic residue diffuser structure, is again marked with
similar characteristics to the single grating case.

6.3 Diffusion Gain

Another way of comparing the performance of these diffusers is to look at the diffusion performance
in terms of the improvement over an equivalent length of flat plate. if this is expressed as the ratio
of flat plate to diffuser performance in decibels we can define a diffusion 'gain' for these structures.

The diffusion 'gain' for the single grating and the repeated grating is plotted in figure 10. It shows
that both single and repeated gratings offer good performance.
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7. CONCLUSION

By using Huffman sequences a diffuser can be designed which does not suffer from the flat plate
frequency of conventional integer based diffusers. In addition. due to the non-integer relation ship
between the diffuser's well depths. an extended frequency range of action and a smoother diffusion
response, as a function of frequency. is achieved. These techniques add additional materials to the
acoustic designers armoury. for tackling real acoustic designs that have physical and practical. as
well as theoretical. constraints.
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Figure 1 Diffusion performance of a phase reflection grating with frequency.
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Figure 3 Selecting the root locations, for a length 14 Huffman sequence.
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Figure 4 Root locations for 5 length 14 Huffman sequence.
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Figure 6 Aperiodic Autocorrelation of a length 14 Huffman sequence.
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Figure 7 Diffusion performance of a single Huffman diffuser of length 14.
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Figure 8 Diffusion performance of a single quadratic diffuser of length 13.
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Figure 9 Diffusion performance of a repeated Huffman diffuser of length 14.
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