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1. INTRODUCTION

An electroacoustic transducer's vanation in sensitivity with direction is usually represented via a
polar plot. This represents a slice of the three dimensional variation with respect to angle.
Unfortunately many transducer's sensitivities are not rotationally symmetric and therefore the polar
pattern must be plotted at more than more than one angle. The two orthogonal x and y directions
are popular but even this level of specification may not cover variations on the diagonal.
Furthermore in many loudspeakers the polar pattem is also a function of frequency. Modern CAD
packages require a full specification of the transducer's polar pattern as a function of frequency in
order to provide an accurate prediction of its likely performance in a given space.

Unfortunately providing this level of accuracy requires that the polar pattern be measured at a large
number of angles, both azimuth and elevation, and over a large number of frequencies. A recent
proposal {1] suggests that a large number of measurements be taken over a full sphere at sixth
octave frequency spacing. Clearly this level of specification is costly in both measurement time and
computer storage. One of the reasons behind the large number of directional measurements is the
need to interpolate amplitude values between measured data points. This is exacerbated if the
measurement angles are coarse.

This problem of restricted directional resolution can be alleviated by forming a continuous, functional
representation of a polar pattern, expressing the polar patterns mathematically, as a continuous
function of direction. This paper shows how to form a continuous, orthogonal, and three
dimensional, representation by expressing the polar pattern as a weighted sum of Surface Spherical
Harmonics - a higrarchical set of basis functions which are orthogonal upon the surface of a sphere.
The Surface Spherical Harmonic weights can be calculated from a limited set of experimental
measurements by means of a discrete Fourier analysis. The resulting spherical harmonic
representation is continuous, yielding a modelled polar pattern for any arbitrary direction. It is also
hierarchical, in that the more harmonics that are included the greater the accuracy of the model, and
has a meaningful spatial structure, with particular Surface Spherical Harmonic weights expressing
particular patterns of directional variation in the polar pattern. This representation may provide not
only a more efficient way of expressing directional variation but also may allow new insights into the
analysis of the spatial variation of transducers.

The paper firstly explains Surface Spherical Harmonics and presents a means of efficiently deriving
them from measured data, The implication and applications are then discussed and finally some
results of the analysis applied to polar pattern measurements are presented.
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2. SPHERICAL HARMONIC ANALYSIS B

in order to perform a Surface Spherical Harmonic analysis of a speaker polar pattern we need to
answer two questions:

*  What are surface spherical harmonics and why are they useful?

* How can we efficiently calculate surface spherical harmonic coefficients from polar pattern
measurements?

2.1  What are Surface Spherical Harmonics?

Conventicnal, one-dimensional signal processing makes use of sinusoidal harmonics as the basis
functions of Fourier analysis. Surface Spherical Harmonics may be simitarly applied to the analysis
of functions on the surface of a sphere - 6, ¢) where 0°<¢<180° and 0°<8<360°. This is possible
because Surface Spherical Harmonics form a complete, orthogonal set over this surface Kaplan [2].
Spherical harmonics arise as the solution to the Laplace equation expressed in spherical polar co-
ordinates. Surface Spherical Harmonics are the special-case spherical harmonics in which the
distance coordinate is constant. We may define the Surface Sphericai Harmonics (normalised so
that their integrals over the surface of the sphere are unity) as:
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Where F’,-,m are the Associated Legendre Functions defined by:
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The parameter n represents the degree of each particular harmonic: ug is the fundamental Surface
Sphetrical Harmonic. The three first-degree harmonics are denoted by vy, vy and vy;. There are
five second-degree harmonics, seven third-degree harmonics and so on. The first few Surface
Spherical Harmonics, listed below, will have a structure familiar to chemists as they form the
electron shell patterns of ‘s’ (fundamental) ‘P’ (first-degree), ‘d’ (second-degree) and 't' (third-
degree) orhitals.
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Because these harmonics form a complete, orthogonal set any function of (8,¢) can be
approximated by a weighted sum of Surface Spherical Harmonic components, up to the.desired
degree;

cosmB B,"(cos¢), m=],...,n
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The weights required to express a function f(8, ¢) in this way can be calculated by Fourier analysis:

é'—'"

f f(6.0,,0,0)singdgdd, 0<Sm<n
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= T ff(9,¢)vm(9,¢)sin¢ dgde, 1<m<n
¢=08=0 ®)

2.2 Deriving Surface Spherical Harmonic Weights from Measured Data

Equations 4 and 5 allow the calculation of the Surface Spherical Harmonic weights given a
continuous function f(8,¢). However, in this investigation we do not have such a function, but
instead a set of polar pattern impulse responses. Spherical Harmonic Analysis (SHA) can be
applied to the responses for each individual time sample. Thus the representation will be of the
form of a new set of weights for each instant of time. Equations 4 and 5 must also be adapted so
that the weights Unppand Vp, may be calculated given that only discrete values of 8 ¢} are
available, effectively sampled at each direction in which a physical polar pattern was measured.
Thus, it is necessary far the integration dencted in Equations 4 and 5 to be approximated by means
of a summation over N discrete points:

4
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Equation 6 is of the form:
y _
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This operation is, therafore, one of numerical integration across the region formed by the surface of
a sphere. ldeally, we wish the approximation to the continuous integral to be exact.

McLaren [3], and Stroud [4] describe efficient methods for exact numerical integration of this form,
up a given degree of Surface Spherical Harmonic, in terms of the discrete directions to use and the
corresponding weights. Although such optimal sets of directions and weights minimise the number
of directions that need be considered, given a particular Surface Spherical Harmonic degree, in
terms of experimenial efficiency they are not, in general, suitable for polar pattern analysis.
Generally, the optimal directions for numerical integration on the sphere are not distributed in a
pattern along which experimental measurements can conveniently be made. In Atkinson [5] an
alternative set of directions and weights for exactly this integration is developed. This set is less
mathematically efficient, since it requires a greater number of individual directions to integrate
exactly functions up to a given degree. However, the choice of discrete directions is more
experimentally practical. The approximation is based on following relationship:

T
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Under this approximation, measurements are made at the same set of angles of azimuth, §, for

each of a set of n angles of elevation, ¢. The 2n angles of azimuth are equally spaced, thus
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forming a 'rectangular’ mesh of directions which permits more systematic experimental
measurements. In order to gain some mathematical efficiency, and maintain the exactness of the
approximate integration, product Gaussian Quadrature is used to select the n angles of elevation.
The Gauss-Legendre quadrature formula uses weighting and an unequal spacing of sampling
points to exactly integrate functions varying between -1 and +1. This approach can be applied to
the spherical integration region of Equation 8 by selecting the angles of elevation ¢ so that cos(¢))
and w;are the Gauss-Legendre nodes and weights for degree n., These values can be found in
tables such as those of Stroud and Secrest [6]. Using this choice of directions Equation 8 permits
the exact numerical integration of all functions F6,¢) less than degree 21, Stroud [4]). In Surface
Spherical Harmonic analysis, since A8, ¢} is the product of the function under analysis and a
particular Surface Spherical Harmonic, it is apparent that this approximation can be used to
calcuiate exactly the wmghts for Surface Spherical Harmenic components up to and including
degree n1.

Maximum Surface Spherical Harmonic Degree Number of Measurements
0 2

8

18

32

50

72

98

7 128

a O s W N -

Table 1 The total number of measurements required to exactly calculate the Surface Spherical
Harmonic weights up to a given spherical harmonic degree.

The total number of measurements required to exactly calculate the Surface Spherical Harmonic
weights up to a given spherical harmonic degree is given by the following equation.

Number of measurements = 2(degree +1)* (9)

The results of equation 9 are shown in Table 1 and from it we can see that spherical harmonics up
to degree & can be achieved using less than one hundred measuremants.

The method of Atkinson [9] is efficient if a manual azimuth and elevation apparatus is used, or i the
movement tima in the elevation position is significantly greater than the azimuth direction. However
if one has computer controlled apparatus which can be programmed to measure at arbitrary angle
then the methods of McLaren [7] and Stroud [8] may offer significant additional savings providing
the mechanical behaviour of the measurement equipment does not cause an additional time penalty
for two axis movements.

However both methods have the problem that if one wishes to increase the order of spherical
harmonic representation then a complete set of new measurements must be made. This is
because, in general, the Gauss-Legendre nodes which determine the elevation positions are
different for different values of n. 1deally, we would like to refine the measurement by making the
minimum number of new measurements by reusing the old ones. Fortunately it is possible to
extend Atkinson's method to achieve this. A method due to Konrod [8] and refined by Patterson [9]
allows one to add n+1 additional points between the existing ones whilst still keeping the old peints.
This ailows us to increase the order, although in a limited fashion, wnlhout havmg to re-measure all
the points.
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For example, one could increase the order from 3, requiring 32 measurements, to order 8, which
would normally require 162 measurements, but in fact would only require 130 additional
measurements if Patterson's {9] technique is used. .

3. DISCUSSION

So Surface Spherical Harmonics can be used to approximate a polar pattern but what are the
implications of this representation? Firstly The angular variability of spherical harmonics is
determined by their degree: As degree increases the spherical harmonic components become
more variable as a function of angle. The effect of higher order spherical harmanics is to sharpen
the polar pattern in a manner similar to the way higher order Fourier components sharpen
waveforms. This means that we would expect to need higher order Surface Spherical Harmonics to
represent narrow main lobes. Conversely wider main lobes should require less harmonics for their
specification. This means that Surface Spherical Harmonics can be used as a more efficient means
of representing polar patterns. Note, that the normal means of representing will require the same
number of points to represent it irrespective of the width of the main lobe. Surface Spherical
Harmonics also specify the polar pattern in three dimensions automatically and this can provide
further savings in storage. Finally Surface Spherical Harmonics can be measured efficiently. The
method of Atkinson [5] is efficient if a manual azimuth and elevation apparatus is used, or if the
movement time in the elevation position is significantly greater than the azimuth direction. However
if one has computer controlled apparatus which can be programmed to measure at arbitrary angle
then the methods of McLaren [3] and Stroud [4] offer significant additional savings.

4. RESULTS

Surface Spherical Harmonic can be applied to microphone as well as loudspeaker polar patterns.
Here we present results based on measurements of the polar pattern of the entrance to the ear
canal. This is a particulary challenging problem because the polar pattern is not aligned along a
given axis and is strongly frequency dependent in both pattern shape and direction. A set of 648
frequency response measurements were analysed by means of an Surface Spherical Harmonic
analysis. This corresponds to setting n=18 in Equation 8, thus requiring measurements with a 10°
azimuthal spacing at each of 18 angles of elevation; £5.0°, $14.5°, +24.0°, £34.0°, +44.0°, £53.5°,
+63.0°, £73.0° and 182.5°, where 0° elevation refers to the horizontal plane. Such a set of polar
pattern measurements allows the calculation of Surface Spherical Harmonic component weights of
up to and including degree 17.

The frequency responses were measured by means of Maximum-Length Sequence (MLS) analysis,
using a MLSSA system (DRA Laboratories). The measurements were made in an anechoic
chamber {measuring approximately 3m x 3m x 3m) at BT Laboratories, Martlesham Heath, using a
Brue! and Kjaer 4127 Head-and-Torso Simulator (HATS) mounted on a turntable, and a Auratone
loudspeaker in a movable bracket on an arched frame. It is estimated that the directional error in
positioning the loudspeaker and HATS ears relative to each other was rarely more than 0.5° and
never more than 1°. The frequency response data collected in the anechoic chamber was
processed using the MATLAB software package to provide the Surface Spherical Harmonic
coefficients up to order 17 at 48 equally spaced frequencies up to 10kHz.

Figures 4 and 5 compare the measured results and the Surface Spherical Harmonic representation
of the same data at two frequencies, 4.305kHz and 9.135kHz. At 4.305kHz the measured and
Surface Spherical Harmonic representation are in close agreement. At 9.135kHz the agreement is
not as good but is still reasonable especially considering the variability in the polar pattern. Note
that the Surface Spherical Harmonic representation is also able to accommodate a shift in angle of
the main lobe as a function of frequency as well.

Figures 6 and 7 show the rms. amplitudes of the Surface Spherical Harmonics as a function of both
degree and frequency, a sort of Surface Spherical Harmonic Spectrum, for these measurements in
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linear and logarithmic scales respectively. !t is clear from these results that, even for this situation,
the amplitude of the Surface Spherical Harmenic weights reduce rapidly with degree. [n fact one
could argue that above about degree six most of the polar pattern information has been captured.
This results augur well for the ability of this representation to capture and represent polar paitern
information efficiently.

5. CONCLUSION

Surface spherical harmonics can be used to represent polar patterns. They have the advantage of
requiring potentially less measurements for a given level of specification. In addition, because they
are an orthogonal basis set, detail can be increased simply by adding in additional harmonics. This
offers the potential for optimising the storage of polar patterns within acoustic CAD programs and
may allow other forms of analysis of polar and scattering pattemns.
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Figure 1 Degree zero spherical harmonic.
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Figure 2 Degree one spherical harmonics.
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Figure 3 Degree two spherical harmonics.
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Figure 4 Measured and Spherical Harmonic generated polar plot at 4305Hz,
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Figure 5 Measured and Spherical Harmonic generated polar plot at 9135Hz.
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Figure 6 Rms Spherical Harmonic Spectra for each frequency bin (linear scale)
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Figure 7 Rms Spherical Harmonic Spectra for each frequency bin (dB scale)
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