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Abstract— This work analyzes approaches to synthetic 
aperture sonar imaging based on the concept of compressive 
sensing and compressive sampling. In compressed sensing, a 
low-dimensional linear projection is used to acquire an efficient 
representation of a compressible signal directly using just a 
small number of measurements. The signal (and image) is then 
reconstructed by solving an inverse problem by linear 
programming. It will be demonstrated that compressed sensing 
allows for improvements in synthetic aperture sonar systems by 
potentially reducing array sizes, beamforming computational 
requirements, synthetic array sampling requirements, image 
storage limitations, and allow for increasing vehicle speed. 
Results show that low error rates are feasible with several 
compressive sensing algorithms.  

I. INTRODUCTION 

ecent papers [3], [4], [5], and [6] have introduced the 
concept known as compressive sensing (CS) or 

compressive sampling. The basic principle is that sparse or 
compressible signals can be reconstructed from a 
surprisingly small number of linear measurements, provided 
that the measurements satisfy an incoherence property [3]. 
Such measurements can then be regarded as a compression 
of the original signal, which can be recovered if it is 
sufficiently compressible. A few of the many potential 
applications are synthetic aperture radar [1] medical image 
reconstruction [12], image acquisition [15], and sensor 
networks [9]. 

In [1] Baraniuk and Steeghs introduced the concept of 
compressive sensing for synthetic aperture radar (SAR). 
They showed that it was possible to reduce the 
computational requirements of SAR by utilizing the 
concepts from CS.  The results presented in their paper 
showed processing capabilities for reduced sampling and 
elimination of the match filtering step in the formation of 
SAR imagery. This work follows the aforementioned SAR 
results with a study on the use of CS for synthetic aperture 
sonar (SAS).  The results of two experiments using CS show 
that CS has potential application for the SAS community; 
especially interesting is the reduced sampling burden for 
image formation. 
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II. COMPRESSIVE SENSING 

Given an N-dimensional signal x that is sparsely 
representable in some basis {iψ } that provides a K-sparse 

representation of x; that is 
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where x is a linear combination of K basis vectors chosen 
from { iψ }, { li } are the indices of those vectors, and {iθ } 

are the weighting coefficients. We can create a sparsity basis 
matrix 1[ ] [ ],Nψ ψΨ = ⋯  thus we have 

 
x θ= Ψ  (2) 

 
where θ  is an 1N ×  column vector with K nonzero 
elements. If the goal is to reconstruct sparse signals from 
measurements, a natural approach is to find the sparsest 
signal consistent with the measurements. Let Φ be a M N×  
measurement matrix, and x yΦ = the vector of M 

measurements of an N-dimensional signal x with M N< . 
Then the approach would be to solve the following 
optimization problem: 
 

0
min ,subject to 

x
x x yΦ =  (3) 

 
Here, the l0-norm ||.||0 simply counts the number of 

nonzero components. This is not a norm in the strictest 
sense; nevertheless it is an effective way to solve the 
problem. However, solving (3) is a provably NP-hard 
problem [2]. Therefore, a result from Candes and Tao [3] 
demonstrates that a solution can be found for random 
Gaussian measurements Φ by solving the following 
optimization problem with ||x||0 =K: 

 

1
min ,subject to 

x
x x yΦ =  (4) 

 
provided log( / )M CK N K≥ for some constant C. CS 

theory tells us that when the matrix ϒ = ΦΨ has the 
restricted isometry property (RIP) [3], [4], and [5] then it is 
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possible to recover the K largest { }iθ from a set of M 

measurements y. Adherence to RIP is similar to saying 
thatΦ andΨ are incoherent. Typically, Φ  is chosen as an 
i.i.d. Bernoulli or Gaussian random variable matrix, as stated 
above. When RIP holds the signal x can be recovered from 
its coefficientsθ  exactly from y by solving (4) [3], [4] 

The RIP has been proposed as a measure of the fitness of 
the matrix upsilon. RIP is defined as follows: The K-
restricted isometry constant for the matrixϒ , denoted byKδ , 

is the smallest nonnegative number such that, for Nθ∀ ∈ℝ  

with 0
Kθ = , 

 
2 2 2
2 2 2

(1 ) (1 )K Kδ θ θ δ θ− ≤ ϒ ≤ +  (6) 

 
A matrix has the RIP if 0Kδ > ; since calculating Kδ for a 

given matrix requires a combinatorial amount of 
computation, random matrices have been advocated.  

CS is an efficient acquisition framework for signals that 
are sparse or compressible in a basis or frameΨ . Rather 
than uniformly sampling the signal x, we measure inner 
products of the signal against a set of measurement vectors 
we then effectively compress the signal. By collecting the 
measurement vectors as rows of a measurement matrix this 
procedure can be written asy x θ= Φ = ΦΨ , with the vector 

y containing the CS measurements. Since ΦΨ  is a 
dimensionality reduction, it has a null space, and so 
infinitely many vectors 'x  yield the same recorded 
measurements y. Fortunately, standard sparse approximation 
algorithms (1) and (2) can be employed to recover the signal 
representation θ  by finding a sparse approximation of y 
using the frameϒ = ΦΨ . 

 

III.  COMPRESSIVE SENSING AND SAMPLING FOR SYNTHETIC 

APERTURE SONAR 

Sythetic aperature sonar (SAS), is akin to SAR in that the 
aperture is formed artificially from  received signals to give 
the appearance of a real aperture several times the size of the 
transmit/receive pair. SAS is performed by collecting a set 
of time domain signals and match filtering the signals to 
eliminate any coherence with the transmitted pulse. SAS 
images are generated by beamforming the time domain 
signals using techniques such as delay-and-sum, chirp-
scaling, and the wave number method [11], which is used 
here. 

The wave number beamforming process requires a 
number of FFT/IFFT pairs and is itself computationally 
complex. In order to alleviate this computational burden, 
experiments were performed with techniques for restoring 
SAS imagery in two ways, (1) by compressively sampling 
the number of channels that are beamformed and comparing 
that restored image with the original image and (2) by 

increasing the sparsity of the raw signal data via a wavelet 
basis and performing a CS optimization on this resultant 
signal, beamforming the restored data, and comparing 
imaging results with the original image. 

A. Sparse Sampling and Reconstruction without CS 
Optimization 

The following experiments involve a reduction in data 
gained by sampling at 50% and 33.3% the channels of the 
sonar data. This is done in two ways, by uniform sampling 
and by randomly spaced sampling. Figure 1 below shows the 
differences in spacing between uniform and non-uniform 
compressive sampling with a 50% sparsity. The bottom 
example in Figure 1 is made using a Bernoulli random 
number generator to provide unequal spacing of various gap 
widths while maintaining a 50% sparsity requirement. 
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Fig. 1.  Sample spacing example, top is uniform sampling (50 
samples) and bottom is Bernoulli sampling with 51 samples. 
 
Using these two sampling methods for sparsities of 50% 

and 66.7% experiments were run for image formation and 
reconstruction. Figures 2 and 3 below compare the results of 
50% sparsity for both uniform and non-uniform compressive 
sampling. The raw data on the right in both figures was 
sampled accordingly and then beamformed to show the 
reconstructed image in the center. The image on the left is 
the original image formed by using the entire sample. As is 
demonstrated in Figure 2, there is a relatively low visual 
difference between the objects in both the original and 
reconstructed images. However, there is significant visual 
difference in the appearance of the background between 
these two images. This also holds true for the resultant 
images shown in Figures 3, 4, and 5. It may be that the 
compressive sampling of this signal captures larger structure 
information and misses the finer details of the background 
scatter. This loss of background resolution however may be 
an agreeable tradeoff for higher speed SAS systems.  
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Fig. 2. Compressive sampling beamforming reconstruction 
example one. The original image is on the left and the 
reconstructed image is in the center with the sampled data on the 
right. The reconstructed image is formed from raw data that was 
uniformly sampled along track with 50% sparsity. 
 
 

 
 

Fig. 3. Compressive sampling beamforming reconstruction 
example two. The original image is on the left and the 
reconstructed image is on the right. The reconstructed image is 
formed from raw data that was sparsely sampled along track with 
a Bernoulli sampling algorithm giving a sparsity of 50%. 
 

The reconstruction errors for the results in Figures 2 and 3 
are 1.542 and 0.691 respectively. The relative error is 
calculated as 

 

0 1 1 0 02 2
( , ) /E x x x x x= −  (7) 

 
where 0x  is the original image and 1x is the reconstructed 

image, it must be noted that both the images and raw signal 
data are complex. Figures 4 and 5 below show the results 
from using 66.7% sparsity. The relative errors for 
reconstruction are 2.518 and 1.568 respectively. The error 
for the 66.7% non-uniform sampled reconstruction is on par 
with the uniformly sampled reconstruction at 50% sparsity. 
 

 
 

Fig. 4. Compressive sampling beamforming reconstruction 
example three. The original image is on the left and the 
reconstructed image is in the center with the sampled data on the 

right. The reconstructed image is formed from raw data that was 
uniformly sampled along track with 66.7% sparsity. 
 

 
 

Fig. 5. Compressive sampling beamforming reconstruction 
example four. The original image is on the left and the 
reconstructed image is on the right. The reconstructed image is 
formed from raw data that was sparsely sampled along track with 
a Bernoulli sampling algorithm giving a sparsity of 66.7%. 

 
As the results above demonstrate, the non-uniform 
compressive sampling method allows for a better 
reconstruction of the original data over traditional uniform 
sampling for the two experiments performed above. 
However, the compressive sampling method will perform 
poorly in highly detailed environments if the spacing is too 
large. 

B. Sparse Sampling and Reconstruction with 
Compressive Sensing Optimization 

The next step is to restore the original raw signal from the 
resulting compressively sampled signal by using methods of 
signal restoration from compressive sensing. Five such 
methods will be examined for reconstruction errors using the 
sampled raw signals versus the originals raw signals in 
image formation. The five algorithms are discussed briefly 
below, for a more thorough examination please see the 
references. 

 
1) Iterative Hard Thresholding with FFT Basis 

The Iterative Hard Thresholding (IHT) algorithm 
previously used in [2] is as follows. Let x[0] = 0 and use the 
iterative step 

 
[ 1] [ ] [ ]( ( )),n n T n

sx H x y x+ = + Φ −  (8) 

 
where Hs(t) is the non-uniform operator that sets all but the 
largest (in magnitude) s elements of t to zero. If there is no 
unique such set, a set can be selected either at random or 
based upon some element ordering. The convergence of this 

algorithm was proven in [2] provided that 2
1Φ < . In this 

case (7) converges to a local minimum of  
 

2
2 0

min subject .
x

y x x s− Φ ≤  (9) 
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2) Spectral Iterative Hard Thresholding with 
Periodogram and Music 

In [10], Duarte and Baraniuk develop a new spectral 
compressive sensing theory for general frequency-sparse 
signals. The key ingredients are an over-sampled DFT 
frame, a signal model that inhibits closely spaced sinusoids, 
and classical sinusoid parameter estimation algorithms from 
the field of spectrum estimation. Using periodogram and 
eigen-analysis based spectrum estimates (e.g., MUSIC), 
their new algorithms perform comparably with other CS 
algorithms. They assume smooth or modulated signals that 
can be modeled as a linear combination of K sinusoids: 

[ ]
1

,k
K

jw n
k

k

x n a e−

=
=∑  (10) 

 
where [0,2 ]kω π∈ are the sinusoid frequencies. In this work 

SIHTp and SIHTm will be used as acronyms for spectral 
iterative hard thresholding with periodogram and music 
respectively. 
 

3) Min-l1 with Equality Constraints 
This method is also known as basis pursuit [3], [6], and 

[7] finds the vector with the smallest l1-norm as shown in 
(4). Instead of seeking sparse representations directly, basis 
pursuit seeks representations that minimize the l1-norm of 
the coefficients. By equating signal representation with l1-
norm minimization, basis pursuit reduces signal 
representation to linear programming [6] and [7], which can 
be solved by standard methods. Furthermore, basis pursuit 
can compute sparse solutions in situations where greedy 
algorithms fail [7]. The results in [3] and [5] show that if a 
sufficiently sparse x0 exists then this method with find it. 

 
4) Total Variation with Equality Constraints 

In Rudin et al. [14] the total variation norm: 

( )TV x x dudv
Ω

= ∇∫ is proposed as a regularization 

functional that does not penalize discontinuities in the signal 
and thus allows for a better edge recovery. They formulate 
their technique as the constrained minimization problem, 

 
2 2

0min subject to  .
x

x dudv x x σ
Ω

∇ − =∫  (12) 

 
In this work, an additional constraint of equality is required, 
i.e. x yΦ = . 

The results of experiment (1) show that the reconstruction 
of compressively sampled data by beamforming results in 
low relative errors for 50% and 67% sparsity.  Experiment 
(2) continues with the 50% compressively sampled data 
method from experiment (1) using non-uniform sampling, 
however prior to beamforming, the original data will be 
reconstructed using the four CS algorithms described above. 
In addition the data that comprises the images is four times 
as large. The results for experiment (2) show that the 

combination of sampling fewer channels/pings and a sparse 
basis projection with CS reconstruction produce similar 
imagery to the original raw data. Figure 7 below shows the 
reconstructed images of experiment (2).  The original raw 
data image formation result is shown in Figure 6 for 
comparison. 

 
Fig. 6. Original beamformed image for experiment (2). 

IHT-FFT SIHT-Period

 
SIHT-RM TV-EQ

 
Fig. 7. Reconstruction results from uniform sampling the 
original raw data used to create the image in Figure 6. Clockwise 
from the top left the results are from IHT with FFT, SIHT with 
periodogram, SIHT with root music, and TV with equality 
constraints. The larger the SNR the better the reconstruction.  
 
The relative reconstruction errors for the CS methods are 

0.492 for IHT, 1.658 for SIHTp, 1.181 for SIHTm, and 
0.390 for TV. As is demonstrated in Figure 7 the IHT and 
TV methods outperform the SIHT methods on this 
experiment. A visual inspection leaves little differences 
between the IHT, TV, and the original image. Most of those 
differences are in the background texture detail. The SIHT 
methods probably do poorly due to the density of the 
frequencies in the signals, since these methods rely on 
integral spaced spectral components.  Future work with 
spectral methods could aim at frequency sampling at the 
receiver or possibly transmitting a frequency sparse signal to 
fully evaluate the restorative capabilities of SIHTp and 
SIHTm.  

IV.  CONCLUSION 

The results above demonstrate experimental feasibility of 
compressive sensing for synthetic aperture sonar. The results 
are not lossless but show promise and may lead to a new 
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computationally efficient system for SAS processing. There 
are many different reconstruction algorithms. Each has its 
deficiencies and plusses depending on the sampling space. If 
the sampling is done in the time domain then it may be best 
to use a TV method. If the sampling is done in the spectral 
domain then maybe future work would show that SIHT with 
Music to be better than the others for reconstruction. As for 
the unevenly spaced sampling example, it appears that 
measurements at non-uniform intervals allow for better 
reconstruction due to the possibility of more detail 
information at some locations with high density sampling. 
These results could lay as a foundation for future work on 
the development of lower cost higher speed SAS systems.  
However, future work should be done to analyze the effects 
of the number of measurements and the bounds of the 
measurement matrix on the error of reconstruction for a 
system to be truly realizable. 
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