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1 INTRODUCTION

The redundant phase ‘center (RPC) algorithm is used in multi-element SAS processing to remove
cross track motion from recorded acoustic data. The RPC-estimated displacements, sometimes
called micronavigation, also can be fused with other navigation data in an error state Kalman filter to
obtain a theoretically optimal navigation solution. This technique was first introduced by Hansen et
al' who evaluated various navigation data fusion techniques in terms of SAS image contrast. .

In this paper, we present a unified abproach for incorporating micronavigation measurements into a ‘
navigation Kalman filter. Our method addresses issues specific to RPC, including the timing of the

transmit and receive events involved and the corrections originating from the navigator’s resident
KF. We begin by giving an overview of navigation Kalman filtering and aided inertial navigation. We
then formulate an RPC model and derive the corresponding KF measurement model. Applicability
to long-term navigation performance. and to SAS motion compensation is discussed.
Recommendations for future work are given. '

2 KALMAN FILTERING FOR UNDERSEA NAVIGATION

The Kalman filter applies to partially observed linear Gaussian dynamic systems of the form
X =0 Fu + Wi W, ~ N(O, QL)

. (1)
Vi = Hyx, f'”k . 7y NN(O:R/{) o

The system state vector x, is a hidden random process of interest that is observed indirectly
through the measurement y, . The variable @, is the state transition matrix, U, is control, and
Hk is the measurement matrix. The system noise W, and the measurement noise n, are

uncorrelated in time and E[wknf]=o for all j, -k. For a model of the form (1), the Kalman, filter -

provides a recursive estimator for the state X, given meés_urements V15 Y5000, Y, The estimate
fck is optimal in both the maximum likelihood sense and the minimum mean square error sense.
Additionally, the filter maintains the error covariance matrix PB=E[(x;-%,)(x,-%;)7]. The two
types of operations carried out by the KF are extrapolation and update.- Extrapolation (2) advances
the state estimate and the error covariance over a time interval containing no measurements
B =@ By by, &= Elx,]
. 7 ~ A YA
P=0, P @+ 0, k= E[(xo — Xy )(xo _xo) ]
The KF update (3) moves the state estimate and error covariance across a measurement by setting
=% +K, ()’1.- - ijek')
o= (]"K/ch)Pk
7 ] -1
where K, = P,H] (H,{PkH,f + Rk) is the Kalman gain. As can be seen by (1)-(3), the Kalman
filter operates in discrete time. . . )

2

(3)
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Inertial navigators solve a nonlinear system of the form  &" = £ (cf"”",ﬁi”"’)+ ZI:Aé‘;”"é',, ,

where f’"’" is a state vector containing the navigation solution, f" describes the system
dynamics, §" is imperfect sensor data from the inertial measurement unit (IMU), A& are
resets or corrections, and J, = 5(1‘—1‘,) is the Dirac delta function at correction time ¢, . The
corrections originate from a navigation Kalman filter and are applied periodically to the processor to
improve the accuracy of {;c "" . The corresponding truth model is given by g = S (f """,s”’“’),

nay

where £™ is the true navigation state and s™ is the output of a perfect IMU. By subtracting the

- truth model from the navigation mode! and exploiting the structure of /™, one may obtain a linear
system of the form

‘ 66[:)1[:\) = Fnav&é:nmr + Zr Aé:rrmvé‘r + (4)
where 8" =§A"‘"’ —¢"™ is the navigation error state vector, F™™ is the navigation error

dynamics matrix, and w"" is Gaussian white noise. The error dynamics matrix F"™ = F“‘"’(f””")

is itself insensitive to error in éf”""; The models contained in (4) include the standard navigation .

error equations and inertial sensor error models. The level of detail required in the modeling
depends on the desired accuracy and the time duration involved. A detailed error model includes
error states for position, velocity, and attitude and for sensor biases, scale factors, and
misalignments. Gravity error models may also be included?.

Suppose now that a navigation system is equipped with an aiding sensor whose output is related to
the true navigation state £"™ and a true sensor state &% by '

§ni:1 — snid _ naid where Sm‘d - hm‘d(fuav’fnid) (5)

Gaussian noise 1™ is uncorrelated between any two measurements and uncorrelated with system
noise w-. Now if 4™ is approximately linear about E™ and £ then we can form a quantity

yuid - hald(é:"nm',gaid )__ §ald (6)
from available data £, £%  and §% such that »™ is related to the error states 5" and
5§aid :éaid _fnid by .

.' A sEnar , _
ymd — I_]a/d [54’{{"‘4 +nmd (7)

where (7) follows from (5) and (6). The sensor errors in 6% are typically modeled as Markov

processes (including random walks and biases) so that we have &% = F@ §g@ 4 i

The combined error dynamics can now be described by the augmented system

&) _(F 0 &:' N > A&, L[ , @
5§ald 0 Fald 5§md 0 wa/d . i

The continuous time system (8) can be discretized using standard numerical techniques. The
resulting discrete time system; together with measurement model (7) and measurements formed by
(6), comprises a partially observed linear Gaussian system of the form (1) to which a Kalman filter
can be applied. We note that the states of the resulting navigation Kaliman filter consist only of
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small,‘ slowly-changing error quantities. The filter forms no direct estimates of whole value quantities
such as latitude or longitude. Corrected whole value quantities are obtained by &"" — §&™,

If the discretization times of systém (8) are chosen to coincide with the correction times ¢, of the
control term zr Af;’”"&(t - tr), then the discrete control term u,_; in (1) and (2) becomes

Ax, if correction at time ¢, =¢, A‘f,l .
Uy, = . . . where Ax, = 9
0  if no correction at time ¢, 0

Thus, each correction is simply added on to the Kalman state at the appropriate time, and x,, in (1)

and fck in (2) represent post-correction quantities. In online KFs, a section of the correction vector.
is set to the negative of the corresponding section of the state vector. Thus, that section of the state
vector is nulled each time a correction occurs. In KFs for data po‘st processing, the Ax, contain the
correction history.

Extending the navigation KF from the single aiding sensor presented above to multiple aiding
sensors is straightforward. For each additional sensor, the state vector in (7) and (8) is augmented
with additional aiding states as needed, and the models are augmented accordingly. Each aiding
sensor has a distinct measurement model of the form (7). As.a new measurement becomes
available from one of the aiding sensors, the KF is time propagated forward to the measurement’s
time of validity, and the KF is updated using the appropriate measurement model.

In the next section, it will be necessary to relate a measurement y to a linear combination of states

stalled
X

: N current
that are valid at various times in the past. Consider a measurement model y = H( j+n,

where the stalled states correspond to the current states at some previous time. If @ is the
transition matrix for x, then use of the augmented system

xc.urrem , xL-‘f:rI'I!IH w '-~ u = }
I‘xtnlled = (I)Z_"_&l i‘l{://L’(l + - + N ! (1 O)
X; X 0 0 . ,
: aug ®k-—l . 0 q>/r—l 0 .
provides a KF framework for y . Here, @} is 0 7 or I ol depending on whether

the stalled states are to be maintained over the extrapolation step or whether they are to be
replaced by more recent copies of the current states, respectively.

3 RPC AS A NAVIGATION AIDING SENSOR

For a given bistatic sonar, let p, and p, be the 3D transmit and receive position vectors,

respectively, in some local coordinate system. Then, the phase center approximation (PCA) states
that the bistatic sonar can be replaced by a fictitious monostatic sonar with phase center located at

P =(pr +pp)/2. The PCA is valid in the far field when dZ/(4rc)<<1, where

d, = ‘pﬁ —pTI is bistatic distance, r is range, and c is sound propagation speed. In the near
field, the phase center approximation causes the received signal to be advanced by the small time
interval df,/(4rc). Taking this effect into account, the PCA holds in the near field when the

transmission sector satisfies d, (1—603205)/(4r/10)<<1, where 6, is the half transmission
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beamwidth and A, is wavelength at center frequency. Additionally, the bistatic angle d,;, /r should’

be small relative to the sensor beamwidths so that PCA does not affect dlrectlvny gains. These
conditions are almost always valid for usual SAS systems®.

In multi-element SAS, the sonar is operated so that each pair of consecutive pings contains one or
more approximately redundant phase centers. The RPC algorithm estimates the time delay arising
from the slant range displacement in a given phase center pair by finding the peak of the .cross

correlation of the two signals. Letting p ., p;m, d,;, and d;,.v be the phase center positions and

the bistatic distances of the first and second pings, respectively, and letting u,, be the unit slant’

range vector directed from the scattering field toward the sonar, we obtain the following model for
RPC.time delay

1”2 2
dbr' "dbi
4rc

Measurement noise % arises from noise in the recorded acoustic signais (and its arbitrary sign
has been chosen to be negative). Since (11) comprises a sensor model of the form (5), we
formulate the RPC KF measurement according to (6) as follows

_2 d? -a? e :
(ch p}?c) Uy “—Z—’?i_ Atp (12)

where the hat 'symbol denotes quantities computed from available but imperfect data, i.e.

corresponding to £, &% and §°¢ in (6). Equation (12) can be interpreted as the difference
between the INS-predicted time delay and the RPC-computed time delay.

A . ) . 2
At'P = At —n'™ where At'" = ;(p;m -P,,c)'um + (11)

It now remains to express (12) as a linear combination of error quantities that can be modeled in the
KF. That is, we seek to obtain a relationship of form (7). Substituting (11) into (12) and neglecting
second order terms, we obtain

) r2 52

2 At ~ 1, i 1 . . rpc
+g(ppc _ppc) Oug +—x 278 D - ooy, "E%Pbi Oy +n"”

where we have let Ap,. = p,, — b, denote phase center displacement; s, is the scale factor of

(13)

sound propagation speed error defined by é = (1+, )c; Bpe = Ppo = Py @and ), = Pl = D)

are phase center position errors on the first and second pings, respectively; du,, =u, —u,, is _
error in the computed slant range direction; p,, = p; — p, and p,, = p, — p, are the true and
computed bistatic vectors, respectively, of the first ping; dp,, = p,, — P, is error in the computed
bistatic vector of the first ping; and similarly p;, and Jp;, are the computed bistatic vector and the

bistatic vector error, respectively, of the second ping. We note that (13) is a linear combination of
error quantities, which is a significant step toward achieving (7). Each error quantity of (13) is now
analyzed in turn.

A model for sound speed error s, depends on the method of computing ¢. If ¢ is assumed to be °

1500m/s, then the model for 5, should include a random bias component. Additionally, the model -
may include a first order Markov process whose strength- and correlation time are functions of the
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spatial statistics of sound speed variation coupled through vehicle velocity. Thus, a reasonable
model for s, augments the system state vector by one or two states.

* Writing out phase center position-error term, we find dp),, ~dp,, = (@0; + 3k~ 0pr — R )2,

which is a sum and difference of errors in the computed sensor positions. A given sensor position
may be decomposed into an INS position and a lever arm from the INS to the sensor by

Psen = Pins + Py FOT convenience, we now introduce the index j=1,2,3,4 to indicate the

following four events: 1) first ping transmit, 2) first ping receive, 3) second ping transmit, and 4)
second ping receive. Thus, the second dot product in (13) becomes

ﬁslr ) (éb;c - 5ppc): %ZJ (_‘ 1)D/ﬂﬁsl/ @iﬂs (tj )+ %Z, (_ l)fj/l_lﬁ;/ lev (/) (14)

where [-] is the ceiling operator, i.e. Z,(“ l)rjmaj =—a, ~a, +a, +a, for a given sequence---- | Formatted: Justied . )

a, . Position error at the INS, @, , is already a block of three states contained in the system state

nay

vector, within the navigation block 6" . Since dp,,, enters into the measurement equation at four

different times, the system state vector must be augmented with position error stalled states at each
relevant time using the technique described by (10). We note that the first sum in (14) loosely
represents the growth in the navigation system slant range position error over one ping interval. It is
the key term in the RPC measurement model. The second sum in (14) can be expanded as follows.
Letting superscripts n and b denote coordinatization in the NED and body frames, respectively, we

have pp. ()= Cr (tj)p,‘;v (/) where C; is the body-to-NED direction cosine matrix. We note that
the body frame transmit lever arm is stationary, i.e. p,Lf_,‘, (1): p,‘;v (3) and the body frame receive
lever arms p, (2) and p,’;,(4) are separated by roughly twice the advance distance between the
two pings. The exact value of p,';‘,(4) may lie in-between receivers if along track interpolation is

used in computing the second signal in the RPC cross correlation. Taking the variation of p,, (])
we can show that

n . ~ Anab (AW n {an YA b (-
ush @)[ev (J) = [u:/l X (lep/ev (.] ))]7 (//” + (u.lrll ) C:@?Iev (J)
where " is navigation system attitude error and where the time-dependency in é[ and " has

been suppressed since these quantities change very little over a single ping interval. We note that

w" is already modeled within the navigation block 8&"™" of the system state vector. The second

sum in (14) is then given by ,
331 i, (7) =4l % (6, 4)- L Q) Gwr + 4 ) (oo, - 2,2)) 15)

If we assume that the receive array is nominally aligned with the vehicle forward axis, then the terms------ {Formatted: Justified ‘ v j
Bi(4)- P}, (2) can be written as —2d,,,,4",, where d., is distance of advance between pings

adv

and ﬁ;m = (1 0 O)T is the unit forward vector. Similarly, the last term on the right hand side of

(15) can be simplified to —,cAlad‘,(ﬁ;’D_or,,,)Ta , where ﬁ;’D,o,,,,, is the last two comporients of the unit

slant-plane orthogonal vector @, = 12.’:/1 X ftﬁw‘, and = (a,, ay)T is the last two components - ) o
* (pitch and yaw) of the misalignment in the array-to-body transformation used to compute the . . ;
p,bw( j). We therefore augment the system state vector with the array misalignment & and model it ’

as a random constant. Compiling results, (14) becomes
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ﬁsll ' (517;5 - é‘ppc): ';'Z, (_ IYJ/Z]ﬁ;{t®fns (t ) adv( Yorih )f W mlv (ugD-orth)Ta (16)

The second. and third terms of (16) represent an artificial slant range crabbing effect arising from
sensor misalignments. . . . .

The slant range direction error dit,, arises from multiple sources and couples with the phase center
displacement Ap,,c in (13). The slant range vector itself may be written as uy =C; C” Uy, . where
the sonar frame s is aligned with the body frame b to within a small angle rotatlon and the slant
range vector is given by w7, =( : (— )d” cosd, sind, )T where dir is 0 for port-facing sonar
data and 1 for starboard-facing data and 6, is the slant range depression angle of the RPC

measurement’s range subswath. Then, taking the variation of %, we find

b oAb an Y oA . »

5”:/1 (Apm X uslt) ‘// + (Appc X usll)T/'l + (Appc) ugz/héP It (17)

where M is misalignment in the computed sonar—to -body transformation and 08, is the (scalar)
slant range angle error. The quantity x arises from misalignment of the sonar maximum response

~ ~p Y . - y . N

axis. The term (Ap:;c xuf,,) M ois negllglble for usual SAS systems since the first component of
each vector in the triple product will be nearly zero, as we now show. Vehicle speed and PRI are
typically controlled so as to null the forward part of Ap The body frame slant range il o 8

nominally aligned with uy, which has no forward component Lastly, the first component of x is
negligible as long as sonar directivity is relatively invariant over the depression angle extent of the
range subswath. The slant angle error 58 . IN (17) arises from imperfect knowledge of bathymetry
and, to a lesser extent, displacement of the subswath acoustic center due to range-dependent
variation in bottom reflectivity. The error 86, couples through the component of vehicle motion

AP, that is orthogonal to the slant plane. In order to minimize 00, , the angle 91,, should be
computed from bathymetry maps or. onboard interferometric processing. Since developing a
dynamic model for 60, is beyond the scope of this paper, we assume (A:,,,, )7 AD}, 80, is white
noise and combine it with the RPC algorlthm noise n’”

The bistatic vector error terms p,, .é“pb, /(27¢) and p, - q;)b, /(27¢) in (13) are negligible in usual
SAS systems. They represent growth of along-track position error between transmit and recelve

scaled by the bistatic angle, and their difference is approximately d d,,&vf”, /c Converting to
range, this quantity is of the order 10 microns for systems with good along-track velocity accuiracy.

-Collecting results together we obtain the following RPC measurement model
P 2] AT n
"= (0/2){72 1)( S/V5plns( ) ( azlv or!h + Appc X ug/t)[
: —doy (uw 011/1) [Appc iy + (db? _db2i / 87 )]Sc }+ v

having the desired form of (7), where »'** =( ,,,,,,) Ap;,, 66, +n™ is the effective measurement

(18)

. noise. Variance of the cross-correlation noise n’” can be computed from the cross-correlation
coefficient using the Cramer-Rao lower bound or the more general Ziv-Zakai lower bound#5, -
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4 DISCUSSION

The approach described in the previous section incorporates RPC-computed delays into an error
state navigation Kalman filter. The RPC-specific states include stalled position errors for transmit
and receive events over the past two pings, array misalignment, and sound speed error. As each
RPC delay becomes available, an RPC divergence is computed by (12) and the KF is updated
using (18). If, in addition to RPC measurements, the KF also includes measurements from the other
available navigation sensors such as DVL, depth gauge, and GPS, then this approach represents
an optimal data fusion technique for combining SAS-derived micronavigation and conventional
navigation sensors. o )

Two possible architectures for implementing the KF are shown in Fig 1. The real-time
implementation depicted on the left follows the conventional Kalman aiding scheme. Here, data’
_from the Navigation Aids, including RPC Displacements, are differenced with data from the
Navigator in order to compute the Divergences. The Divergences are input to the KF as
observations. Periodic corrections are applied from the KF to the Navigator, which provides the
Navigation Solution. The post-processing architecture is shown on the right. Here, it is assumed
that the AUV is equipped with an Organic Navigator and KF. The purpose of the Micronay KF is to
estimate the error in the Organic Navigation Solution using data computed from the Navigation Aids
and RPC. (In addition to estimating navigation error, the Micronav KF also estimates aiding the
sensor parameters such as biases, scale factors, misalignments, etc.) The estimates are shown as
* output Corrections from the Micronav KF. In order to properly implement the error state system (8),
the Micronavigation KF requires input Corrections from the Organic KF. These Organic KF

Corrections provide the AE™ in (8). Since (8) provides an exact description of the system error

dynamics for both architectures, the post-processing architecture is fundamentally equivalent to the
real-time architecture in terms of validity and accuracy. ) : .

Real-Time Architecture Post-Processing Architecture

Nav Aids RPC i Nav Aids

DVL, Depth, GPS, etc

N U S g

DVL, Depth, GPS, etc . i T z
g Organic INS 3

B o

Compute . Compute Compute 2

Divergence Displacements i Divergence Divergence g.

Nav Solution i
Micronav Navigator ; Organic " Organic Nav Solution Micronav
KF 9 > [ KF Navigator G

Inertial Inertial g gicror&ﬁv KE

Corrections AV, 20 Sensors AV, 20 .Sensors orrections

. i
Corrections

.Figure 1. Real-Time and Post-Processing Architectures

The micronavigation KF with RPC aiding was originally conceived as a means for improving-long-
term navigation performance. Simulation thus far has shown that the effectiveness of RPC aiding
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depends on the characteristics of the "underlying navigation system. For the high -accuracy
navigation systems used in undersea surveys, it does not appear that micronavigation aiding is able
to improve the system’s ability to gyrocompass and maintain heading accuracy. Heading error
resulting from gyro bias is a primary source of position error for long-term vehicle operation without
an absolute position reference. On the other hand, RPC behaves similarly to the cross track
components of the DVL. Thus, micronavigation aiding provides some redundancy in the case of
.DVL failure and could be used in calibrating a new DVL in case of at-sea replacement. In systems
where DVL eror dominates gyro-induced errors, RPG measurements can provide some
performance enhancement.

An alternative application of the micronavigation KF is SAS motion compensation. As no single
source of mocomp data is ideal under all conditions, the KF provides an attractive framework for
blending data from all available sources. Several lines of research related to mocomp are
- elaborated in the next section.

5 RECOMMENDATIONS

First, although only the slant range component of phase center displacement was considered in this
analysis, it is also possible to estimate the along track, or surge, displacement by maximizing signal
correlation in the along-array direction. The surge estimator is far less accurate than the slant range
-sway estimator, however, surge estimates have the interesting property of being independent of
sound speed. Thus, RPC-derived surge may provide the KF with observability into the forward
component of accelerometer and’ DVL scale factors. Second, if the micronavigation KF solution
shows promise for SAS mocomp, then further improvement may be ‘achieved by. reptacing the KF
with a fixed interval Kalman smoother over each SAS data frame. The smoothed solution has lower
variance than the filtered solution and is not subject to discontinuities at the KF updates. Third,
there is the possibility of using autofocus as an aiding sensor. Autofocus-estimated phase errors
provide a measure of residual slant range motion in the navigation solution used to focus the image.
They may contain valuable information about inertial instrument errors. Fourth, a micronavigation
KF may provide the means for detecting and correcting Ao/2 cycle slips which occur in the RPC

algorithm at low SNR. A general property of KFs is that the innovation sequence y, — kack in (3)

is white noise with covariance matrix R, + H, P, H . In the case of the RPC measurement. the

covariance matrix of the innovation is a scalar quantity and the corresponding standard deviation.is
typically a small fraction of a wavelength. Thus, it should be possible to detect and remove cycle
skip errors by thresholding on the KF innovation:. :
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