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1 INTRODUCTION  
In 1992, I proposed a generalized Sabine formula that developed reverberation time over a power 
series of the average reflection coefficient on the boundaries of an ergodic enclosure1. Building on 
the work of Joyce2 and Kuttruff3, this generalized formula considers the long-term distribution of 
reflections along one single ray as a Lévy process, for which Paul Lévy4 developed the complete 
characterization. As a consequence, the decay process reduces to the analytical continuation to 
real values of the characteristic function of a Lévy process.  
 
Two years later, using numerical simulations carried out by Mortessagne et al.5,6 on stadia, which 
are made of squares prolonged by two half-discs on two opposite sides, I reduced the development 
to just two terms that made it possible to monitor reverberation times up to large absorptions in 
these specific 2D enclosures.  
 
The present paper revisits this development in the case of 2D and 3D spherical and rectangular 
ergodic enclosures that, according to Joyce2, follow Lambert law reflections. As explained by 
Kuttruff3, reverberation is piloted by the first two statistical moments of the free path distribution 
between successive reflections. Analytical formulations of these two moments have been derived 
for 2D and 3D spherical and rectangular ergodic enclosures; but their complexity, especially for the 
3D rectangular enclosure, is beyond the scope of this conference paper, which only presents 
results. However, it should be noted that the complex analytical integration recovers the usual 
values of the mean free paths – πS/P for the 2D case and 4V/S for the 3D case, where V is the 
volume, S the surface, and P the perimeter of the enclosure – as demonstrated by Joyce2. In fact, 
the mean free paths were calculated as a verification of the integration procedures. 
 
The paper starts with the reverberation formulae of 1992 and 1994, which are compared to Levy’s 
original expression for a characteristic function and to Kuttruff’s formula3. The case of high mean 
absorption coefficients is also discussed, when Kuttruff’s formula breaks down, as well as the case 
of different absorption coefficients on different boundaries. This makes it possible to specify the limit 
of validity when mean absorption becomes large. It then turns to the analytical formulae of the mean 
free paths and mean quadratic free paths for 2D and 3D, spherical and rectangular ergodic 
enclosures, and to the corresponding formulae that can then be derived from Lévy’s expression. In 
the end, it revisits Kuttruff’s formula and shows that more accurate integration leads to an 
expression that does not break down for large absorptions coefficients. 
 
Finally, the implications of this ‘revised theory’ for absorption measurements in reverberation 
chambers and for auditorium design are discussed. 
 
 
2 MY 1992 AND 1994 REVERBERATION FORMULA  
2.1 Generalized Reverberation Formula 

As explained above in the introduction, my generalized reverberation formula from 1992 was based 
on the expression of the characteristic function of a Lévy process, which generalizes Poisson 
processes while keeping independent events that take place in successive instants. Following 
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Kuttruff3, I considered the probability distribution 𝑃 𝑛 𝑡  of reflections along a ray during the time 
span 𝑡. Due to the ergodic hypothesis, all rays are equivalent. Then, according to Lévy, the 
logarithm of the characteristic function of such a process, better known as the cumulant function, is 
expressed by: 

𝜓 𝑧, 𝑡 = 𝑙𝑛 𝑒!"# 𝑃 𝑛 𝑡
!

!!!

= 𝑚 𝑡 𝑖𝑧 − 𝑔 𝑡
𝑧!

2
+ 𝑒!"# − 1 −

𝑖𝑧𝑢
1 + 𝑢!

!!

!!
𝑑𝑁 𝑡, 𝑢  

where 𝑚 𝑡 , 𝑔 𝑡  and 𝑁 𝑡, 𝑢  are continuous in 𝑡, null for 𝑡 = 0; and where 𝑁 𝑡, 𝑢  is a non-
decreasing function of 𝑢 in each interval −∞, 0  and 0,∞ , null at infinity, and satisfying for all 𝑡 
𝑢! 𝑑𝑁 𝑡, 𝑢  finite on all finite intervals. From that expression and symmetry considerations due to 

ergodicity since time averages and ensemble averages are equal, 𝑚 𝑡 , 𝑔 𝑡  and 𝑁 𝑡, 𝑢  must be 
proportional to 𝑡, which leads to infer that the decay rate takes the form: 

𝛿 𝑡 =  −
𝜕𝜓 𝑙𝑛 𝑅 , 𝑡

𝜕𝑡
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!
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!!
𝑑𝑁 𝑢  

where 𝑖𝑧 has been replaced by 𝑙𝑛 𝑅 , 𝑅 being the mean reflection coefficient. In ref.1, I further 
assumed that 𝑔 is null, which leads to the following formula for the reverberation time: 

𝑅𝑇 =  
13.8

−𝑚 𝑙𝑛 𝑅 + 1 −  𝑅!! 𝑛!
 

when 𝑢 takes discrete positive values only. Note that Kuttruff’s formula is equivalent to retaining the 
two first terms only in the cumulant function, assuming that 𝑁 𝑢 = 0 for all 𝑢, leading to a different 
expression of the reverberant time: 

𝑅𝑇! =  
13.8

−𝑚 𝑙𝑛 𝑅 1 + 𝑔 𝑙𝑛 𝑅
2𝑚

 

which diverges for large values of 𝑅 since 𝑙𝑛 𝑅  is always negative.  
 
 
2.2 Deriving the terms in the formula 

The different terms in the reverberation time formula can be derived from the standard deviation of 
path fluctuations. Indeed, when 𝑚 𝑡  and 𝑔 𝑡  are both null and 𝑢 takes only one value, 𝑃 𝑛 𝑡  
takes the explicit form: 

𝑃! 𝑛 𝑡 = 𝑒!!" ! 𝑡𝑁 𝑢
!

𝑛!
 

Here, 𝑢 corresponds to an “amplitude” – or order – of reflection, which can be different from 1, so 
that the effective number of reflections, in the usual sense of the term, is equal to 𝑛𝑢. From this 
expression, the probability of waiting time 𝑡 for observing the 𝑛!! reflection of order 𝑢 is given by: 

𝑃! 𝑡 𝑛 = 𝑒!!" ! 𝑡𝑁 𝑢
!!!

𝑛 − 1 !
𝑁 𝑢  

since there were only 𝑛 − 1  reflections during time 𝑡, the 𝑛!! one occurring at instant 𝑡 = 𝑑𝑡. The 
mean value and the variance of this waiting time are therefore given by: 

< 𝑡 > =
𝑛

𝑁 𝑢
  , 𝜎!! 𝑛 =

𝑛
𝑁! 𝑢

 

Taking into account the effective number of reflections, the mean waiting time 𝑡 and its variance 𝜎! 
between effective reflections are given by:  

𝑡  =
< 𝑡 >
𝑛𝑢

 =
1

𝑢𝑁 𝑢
 , 𝜎! =

𝜎!! 𝑛
𝑛𝑢

=
1

𝑢𝑁! 𝑢
=

𝑡
𝑁 𝑢

 ,   and   𝛾! =
𝜎!

𝑡!
= 𝑢 

where 𝛾! is the relative variance. In the case of stadia, numerical simulations from Mortessagne et 
al.5,6 lead to 𝑁 𝑢 = 111.3 for 𝑢 = 0.576. Considering that the value of 𝑢 is very close to ½, I refined 
the analysis by considering a mean value 𝑚, attested by further data sent by Mortessage and 
Legrand. It consists in modifying the effective number of reflections to take into account the 
influence of 𝑚 during the mean waiting time < 𝑡 >: the effective number of reflections becomes 
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equal to 𝑛𝑢 +𝑚 < 𝑡 > = 𝑛 𝑢 + !
! !

, so that the mean waiting time and variances between 
effective reflections become: 

𝑡  =
< 𝑡 >

𝑛 𝑢 + 𝑚
𝑁 𝑢

 =
1

𝑚 + 𝑢𝑁 𝑢
 , 𝜎! =

𝜎!! 𝑛

𝑛 𝑢 + 𝑚
𝑁 𝑢

=
𝑡 

𝑁 𝑢
 ,     𝛾! = 𝑢 +

𝑚
𝑁 𝑢

  

In other words, the variance keeps the same expression as before. The data from Mortessagne et 
al.5,6 now lead to 𝑁 𝑢 = 111.3 and 𝑚 = 8.46 for 𝑢 = 0.5. Note that Sabine formula corresponds to 
𝑢 = 1. 
 
Mortessagne et al.5,6 compared their numerical simulations to Kuttruff’s formula. This time, the 
probability distribution 𝑃 𝑛 𝑡  of reflections along a ray during the time span 𝑡 takes the form: 

𝑃 𝑛 𝑡 =
1
2𝜋𝑔𝑡

𝑒!
(!!!")!
!!"  

so the probability of waiting time 𝑡 for observing the 𝑛!! effective reflection is now given by: 

𝑃 𝑡 𝑛 =
1

2𝜋𝛾!𝑡
𝑒
!
(!!!!)

!

!!!!  

where 𝛾! =  !
!! is the relative variance of the process. However, this is not the approach taken by 

Kuttruff, who postulates a Gaussian probability distribution for 𝑃 𝑡 𝑛 : 

𝑃 𝑡 𝑛 =
1

2𝜋𝑛 𝛾𝑡
𝑒
!(!!!!)

!

!!!!!! ∝ 𝑃 𝑛 𝑡  

where 𝑡 is the mean waiting time between successive reflections as before, and 𝛾! still is its relative 
variance. Kuttruff then points out that 𝑛 can be replaced by its mean value 𝑡 𝑡 in the denominators, 
leading to the approximation: 

𝑃 𝑛 𝑡 ≈
1

2𝜋 𝑡𝛾! 𝑡
𝑒
!(!!! !)!
!!!! ! =

1
2𝜋𝑔𝑡

𝑒!
(!!!")!
!!"  

Thus, 𝑚 = 1 𝑡 and 𝑔 = 𝛾! 𝑡 in the formula for 𝑅𝑇!, which takes the expression given by Kuttruff: 

𝑅𝑇! =  
13.8

−𝑚 𝑙𝑛 𝑅 1 + 𝛾
! 
2 𝑙𝑛 𝑅

 

 
Table 1 presents the reverberation times calculated for different values of the mean absorption 
coefficient 𝛼 = (1 − 𝑅). They were computed with the data from Mortessagne et al.5,6, and 
compared with Sabine’s, Eyring’s and Kuttruff’s reverberation times. The latest one diverges for 
𝛼 > 0.981, that is, for the last column of Table 1. The data correspond to a mean waiting time of 
0.0156 s, or a mean free path of 5.3 m, that is, a stadion built on a square with 4.85 m long sides. 
The speed of sound was taken as 340 m/s. Note that Eyring reverberation time 𝑅𝑇! corresponds to 
keeping the first term only in the denominator of Kuttruff’s formula. 
 
The last line of Table 1 is a revised version of Kuttruff’s formula, that is discussed in Sect. 5.  
 

Table 1: reverberation times for the stadion of Mortessagne et al.5,6. 
𝛼 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝑅𝑇! 2.153 1.076 0.718 0.538 0.431 0.359 0.308 0.269 0.239 0.215 
𝑅𝑇! 2.043 0.965 0.604 0.421 0.311 0.235 0.179 0.134 0.093 0.0 
𝑅𝑇! 2.107 1.031 0.673 0.494 0.388 0.319 0.274 0.249 0.278 – 

𝑅𝑇!!!.!"# 2.106 1.028 0.668 0.486 0.377 0.302 0.248 0.205 0.169 0.124 
𝑅𝑇!!!/! 2.090 1.012 0.651 0.469 0.359 0.284 0.228 0.184 0.144 0.0 
𝑅𝑇!! 2.104 1.023 0.660 0.476 0.364 0.286 0.228 0.180 0.136 0.0 

 
As can be seen in Table 1, the last four reverberation formulae are equivalent within 5% accuracy 
up to 𝛼 = 0.5. Note that 𝑅𝑇!!!.!"# suffers from the same drawback as Sabine formula: it gives 
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positive reverberation time for full absorption. 
 
 
3 2D AND 3D ERGODIC ENCLOSURES  
We now turn on to more complex enclosure shapes, namely circular and rectangular enclosures. 
 
3.1 Circular enclosures 

In his paper on the effect of surface roughness on reverberation time, Joyce2 explicitly developed 
the case of the 3D spherical enclosures, and gave qualitative results for the 2D circular enclosures. 
He was interested in the transition from random reflection – Lambert law – to specular reflection. 
Here, I only use the results for random reflection. 
 
In that case, the mean free path is equal to 𝑙 = !

!
𝑅, where 𝑅 is the radius of the sphere, and the 

mean quadratic path to 𝑙! = 2𝑅!, which gives a variance 𝜎! = !
!
𝑅!, or a relative variance of 

𝛾! = !!! !!

 !
= !

!
= 0.125 according to Kuttruff3. The calculation is straightforward and is not 

reproduced here. In the case of the circular disc of radius 𝑅, these values are respectively 𝑙 = !
!
𝑅, 

𝑙! = !
!
𝑅!, 𝜎! = !

!
− !!

!
𝑅!, or a relative variance of 𝛾! = !"

!!!
− 1 = 0.0807 ≈ !

!".!
. Note that mean 

free paths and mean quadratic paths must be converted to time with the help of the speed of sound 
𝑐, taken as 340 m/s in the calculations. 
 
Table 2 gives the same reverberation times as Table 1, calculated for a disc for different values of 
the mean absorption; and Table 3 the same data for the sphere. In both case, the mean free path 
was kept to 5.3 m, as in Table 1. Thus, Sabine’s and Eyring’s reverberation times are the same as 
for the stadion (Table 1). However, the values of 𝑢 have to be adapted to each case: for the disc, 
𝑢 = 0.0807 leads to 𝑁 𝑢 = 794.3; but choosing 𝑢 = 1 13 = 0.0769 leads to the same value of 
𝑁 𝑢 = 794.3 with 𝑚 = 0.0608. For the sphere, 𝑢 = 0.125 leads to 𝑁 𝑢 = 512.8; and choosing 
𝑢 = 1 9 = 0.111 leads to the same value of 𝑁 𝑢 = 512.8 with 𝑚 = 0.0608. 
 

Table 2: reverberation times for a disc of radius 3.37 m. 
𝛼 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝑅𝑇! 2.153 1.076 0.718 0.538 0.431 0.359 0.308 0.269 0.239 0.215 
𝑅𝑇! 2.043 0.965 0.604 0.421 0.311 0.235 0.179 0.134 0.093 0.0 
𝑅𝑇! 2.052 0.97 0.61 0.43 0.32 0.244 0.188 0.143 0.103 – 

𝑅𝑇!!!.!"!# 2.052 0.974 0.612 0.430 0.319 0.244 0.188 0.143 0.102 0.017 
𝑅𝑇!!! !" 2.051 0.973 0.612 0.429 0.319 0.243 0.187 0.142 0.102 0.0 
𝑅𝑇!! 2.052 0.973 0.612 0.430 0.319 0.243 0.187 0.142 0.102 0.0 

 
Table 3: reverberation times for a sphere of radius 4 m. 

𝛼 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝑅𝑇! 2.153 1.076 0.718 0.538 0.431 0.359 0.308 0.269 0.239 0.215 
𝑅𝑇! 2.043 0.965 0.604 0.421 0.311 0.235 0.179 0.134 0.093 0.0 
𝑅𝑇! 2.057 0.978 0.617 0.435 0.325 0.249 0.193 0.149 0.109 – 

𝑅𝑇!!!.!"# 2.057 0.978 0.617 0.435 0.324 0.249 0.193 0.148 0.108 0.027 
𝑅𝑇!!! ! 2.054 0.975 0.614 0.432 0.321 0.246 0.190 0.145 0.104 0.0 
𝑅𝑇!! 2.057 0.978 0.617 0.435 0.324 0.248 0.191 0.146 0.105 0.0 

 
In this case of low relative variances, the last four formulae remain very close to each other up to 
𝛼 = 0.9. Note that Kuttruff’s formula only diverges for 𝑅 = 1 − 𝛼 < 1.72x10!!! for the disc, and 
𝑅 < 1.125x10!! for the sphere, which are almost zero. 
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As pointed out by Joyce2, the advantages of the disc and the sphere are that computing mean free 
paths and mean quadratic paths is straightforward. On the other hand, their disadvantages are that 
the relative variance 𝛾! cannot be varied. This is why rectangular enclosures are now considered. 
 
3.2 Rectangular enclosures 

The cases of 2D and 3D rectangular enclosures require more complex integration. Basically, a two-
step integration procedure is used for 2D rectangular enclosures, first on directions for rays starting 
on a running point on one side, taking into account a Lambert distribution of direction (cosine law), 
then on the running point along the side. The procedure must be repeated on the four sides of the 
rectangle. For 3D rectangular enclosures, a four-step integration procedure is used, first on a 
rectangular slice of the parallelepiped, using the same steps as for 2D enclosure, then along the 
direction perpendicular to the slice, and finally rotating the result around azimuths. All results are 
analytical, except for one integral in the last step of the 3D integration. 
 
This procedure does recover the expected mean free paths in both 2D and 3D cases, namely 
𝑙 = !"!

! !!!
 in the 2D case, and 𝑙 = !!"!

! !"!!!!!!
 in the 3D case, where 𝐿, 𝑙, and ℎ are respectively the 

length, the width, and the height of the enclosure. The mean quadratic paths take much more 
complex expressions: in the 2D case, it becomes: 

𝑙! =
2

3 𝐿 + ℎ
𝐿! + ℎ!

!
! − 𝐿! + ℎ! +

ℎ!

𝐿 + ℎ
𝐿 𝑙𝑛

𝐿 − ℎ + 𝐿! + ℎ!

𝐿 + ℎ − 𝐿! + ℎ!
−

𝐿!

𝐿! + ℎ! − ℎ
+ 2ℎ

+
𝐿!

𝐿 + ℎ
ℎ 𝑙𝑛

ℎ − 𝐿 + 𝐿! + ℎ!

ℎ + 𝐿 − 𝐿! + ℎ!
−

ℎ!

𝐿! + ℎ! − 𝐿
+ 2𝐿  

Computation of the 3D case is under current development. Note that the 2D expression for 𝑙! 
diverges as ℎ!𝑙𝑛 2 𝐿 ℎ  for large values of the ratio 𝐿 ℎ ; in other words, the very long paths 
dominate for elongated enclosures. 
 
Tables 4 and 5 present the same reverberation times as in Table 1, respectively for a square 
(𝛾! = 0.205), and a rectangle of ratio 1:10 (𝛾! = 0.353). Note that much larger 𝛾! values are 
obtained that in the case of the disc and the sphere. In fact, any ratio can be achieved, provided the 
rectangle is elongated enough. Note also that Kuttruff’s formula diverges for 𝑅 < 6.0x10!! in the 
case of the square, and 𝛼 > 0.997, in the case of the rectangle of ratio 1:10. 
 

Table 4: reverberation times for a square of 6.75 m long sides. 
𝛼 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝑅𝑇! 2.153 1.076 0.718 0.538 0.431 0.359 0.308 0.269 0.239 0.215 
𝑅𝑇! 2.043 0.965 0.604 0.421 0.311 0.235 0.179 0.134 0.093 0.0 
𝑅𝑇! 2.066 0.987 0.627 0.445 0.334 0.259 0.204 0.160 0.122 – 

𝑅𝑇!!!.!"# 2.065 0.987 0.626 0.444 0.333 0.258 0.202 0.157 0.117 0.044 
𝑅𝑇!!! ! 2.064 0.986 0.625 0.443 0.332 0.257 0.201 0.156 0.116 0.0 
𝑅𝑇!! 2.065 0.986 0.625 0.442 0.331 0.255 0.199 0.153 0.112 0.0 

 
Table 5: reverberation times for a rectangle of ratio 1:10 (short side 3.7 m long). 

𝛼 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝑅𝑇! 2.153 1.076 0.718 0.538 0.431 0.359 0.308 0.269 0.239 0.215 
𝑅𝑇! 2.043 0.965 0.604 0.421 0.311 0.235 0.179 0.134 0.093 0.0 
𝑅𝑇! 2.082 1.004 0.644 0.463 0.354 0.280 0.227 0.187 0.157 – 

𝑅𝑇!!!.!"! 2.082 1.003 0.642 0.461 0.350 0.275 0.219 0.175 0.137 0.076 
𝑅𝑇!!! ! 2.077 0.999 0.638 0.456 0.346 0.270 0.215 0.170 0.131 0.0 
𝑅𝑇!! 2.081 1.001 0.639 0.456 0.345 0.268 0.211 0.165 0.122 0.0 

 
In these cases of larger relative variances, the differences between the last 4 reverberation 
formulae are much larger. They reach more than 10% for 𝛼 = 0.9.   
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For 3D parallelepipeds, Kuttruff3 has carried out Monte-Carlo simulations for some special case of 
relative room dimensions. The numerical mean free paths are very close to the theoretical values; 
and 𝛾! varies between 0.342 for a cube to 0.613 for a flat room of ratio 1:10:10, which are roughly 
twice as large values as for the corresponding rectangular rooms. Tables 6, 7 and 8 present the 
same reverberation times as in Table 1, respectively for the cube, ratio 1:2:5 (𝛾! = 0.403), and ratio 
1:10:10. In these case, Kuttruff’s formula diverges for 𝛼 larger than 0.997, 0.993, and 0.962 for 
respectively the cube and the rooms of dimensions 1:2:5 and 1:10:10. 
  

Table 6: reverberation times for a cube of 8 m long edges. 
𝛼 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝑅𝑇! 2.153 1.076 0.718 0.538 0.431 0.359 0.308 0.269 0.239 0.215 
𝑅𝑇! 2.043 0.965 0.604 0.421 0.311 0.235 0.179 0.134 0.093 0.0 
𝑅𝑇! 2.081 1.003 0.643 0.462 0.352 0.279 0.225 0.185 0.154 – 

𝑅𝑇!!!.!"# 2.080 1.002 0.641 0.459 0.349 0.274 0.218 0.174 0.135 0.074 
𝑅𝑇!!! ! 2.079 1.000 0.639 0.457 0.347 0.272 0.216 0.172 0.132 0.0 
𝑅𝑇!! 2.080 1.000 0.638 0.456 0.344 0.267 0.210 0.164 0.122 0.0 

 
Table 7: reverberation times for a room of ratio 1:2:5 (short edge 4.5 m long). 

𝛼 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝑅𝑇! 2.153 1.076 0.718 0.538 0.431 0.359 0.308 0.269 0.239 0.215 
𝑅𝑇! 2.043 0.965 0.604 0.421 0.311 0.235 0.179 0.134 0.093 0.0 
𝑅𝑇! 2.088 1.010 0.650 0.470 0.361 0.288 0.236 0.198 0.174 – 

𝑅𝑇!!!.!"# 2.087 1.009 0.648 0.466 0.356 0.281 0.226 0.182 0.143 0.087 
𝑅𝑇!!! ! 2.073 0.995 0.634 0.452 0.341 0.265 0.209 0.165 0.125 0.0 
𝑅𝑇!! 2.086 1.006 0.644 0.461 0.349 0.272 0.215 0.168 0.126 0.0 

 
Table 8: reverberation times for a flat room of ratio 1:10:10 (3.2 m high). 

𝛼 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝑅𝑇! 2.153 1.076 0.718 0.538 0.431 0.359 0.308 0.269 0.239 0.215 
𝑅𝑇! 2.043 0.965 0.604 0.421 0.311 0.235 0.179 0.134 0.093 0.0 
𝑅𝑇! 2.112 1.036 0.678 0.500 0.394 0.327 0.283 0.264 0.318 – 

𝑅𝑇!!!.!"# 2.110 1.032 0.672 0.491 0.381 0.307 0.253 0.210 0.175 0.132 
𝑅𝑇!!! ! 2.087 1.009 0.648 0.466 0.356 0.280 0.224 0.180 0.140 0.0 
𝑅𝑇!! 2.107 1.027 0.664 0.479 0.367 0.289 0.230 0.182 0.138 0.0 

 
As the relative variance increases further in these cases, the last four reverberation formulae 
diverge at larger absorption. However, the last two formulae agree within 2% at all absorptions.   
 
 
4 DISCUSSION 
4.1 Influence of relative variance 

In the previous examples, care was taken that the mean free path and the mean waiting time were 
kept to the same values. As a consequence, Sabine and Eyring reverberation times are the same 
for all enclosures. The other reverberation times vary, as they depend on the relative variance 𝛾!. 
However, the dispersions are less than 5% within one same enclosure for the usual range of 
absorptions (𝛼 ≤ 0.5), and increase with 𝛾! for large absorption coefficients, where they can reach 
more that 20%. 
 
Note that Kuttruff reverberation time diverges for very small values of the reflection coefficient 𝑅 – 
large absorption. But for practical applications, this only happens for mean absorption coefficient 
larger than 0.9. Only disproportionate rooms, with 𝛾! > 0.86, reach this divergence for 𝛼 < 0.9; for a 



Proceedings of the Institute of Acoustics 
 
 

 
Vol. 45. Pt. 2. 2023 
 

rectangular 2D room, it corresponds to a dimension ratio larger than 45:1, which indeed has no 
practical use. 
 
4.2 Validity for large absorption 

The different reverberation formulae presented in this paper are only valid for ergodic room, as they 
are all based on the asymptotic distribution of reflections along one single ray. Indeed, only one ray 
needs being considered in ergodic room, as any randomly chosen starting position evolves in a ray 
that eventually comes infinitesimally near any other combination of position and direction. As the 
trajectories of the rays do not depend on the value of the reflection coefficient, the distribution of 
reflections is independent of absorption. As a consequence, the reverberation formulae are valid for 
all absorption values. 
 
It should be note, however, that the formulae make use of the asymptotic distribution of reflections. 
It can therefore happen that energy along the ray has decayed almost to zero before the asymptotic 
distribution is approached. This typically happens in the case of very large absorptions. In other 
words, reverberation formulae, although still valid in principle, cannot be applied to very large 
absorptions. This seriously reduces the importance of the divergence of Kuttruff’s formula discussed 
in the previous section. 
 
4.3 Non-uniform absorption 

The case of non-uniform absorption derives from the previous discussion: as long as the asymptotic 
distribution of reflections is attained before energy along the ray has decayed almost to zero, the 
different formulae studied in this paper are valid. One must only attribute a certain probability to 
each absorption coefficient, and when absorption is not angle dependent, the obvious choice is the 
proportion of boundary surface corresponding to each absorption coefficient. With this choice, a 
mean absorption coefficient is readily obtained, with which the different formulae can be computed. 
 
 
5 REVISITING KUTTRUFF’S FORMULA 
In Sect. 2.2, I explained that Kuttruff has chosen a different approach than starting with the 
probability distribution 𝑃 𝑛 𝑡  of reflections along a ray during the time span 𝑡. Instead, he starts 
with the probability distribution 𝑃 𝑡 𝑛  of travelling times 𝑡 spanning 𝑛 reflections. The central 
theorem of probability leads him to postulate a Gaussian probability distribution for 𝑃 𝑡 𝑛 : 

𝑃 𝑡 𝑛 =
1

2𝜋𝑛 𝛾𝑡
𝑒
!(!!!!)

!

!!!!!!  

This distribution can also be considered as equal to 𝑃 𝑛 𝑡 , but Kuttruff has then some problem for 
deriving its cumulant function, and therefore replaces 𝑛 by its mean value 𝑡 𝑡 in the denominators. 
 
In fact, the cumulant function of this distribution of 𝑛 given 𝑡 can be exactly computed, under the 
assumption that 𝑛 is a continuous variable and not a discrete one. One obtains: 

𝜓 𝑧, 𝑡 = 𝑙𝑛 𝑒!"# 𝑃 𝑛 𝑡 𝑑𝑛
!

!
= −𝑡

1 + 2𝛾!𝑖𝑧 − 1
𝑡𝛾!

 

When replacing 𝑖𝑧 with 𝑙𝑛 𝑅 , one obtained a ‘revised’ Kuttruff formula: 

𝑅𝑇!! =  
13.8 𝑡𝛾!

1 − 2𝛾!𝑙𝑛 𝑅 − 1
 

which reduces to Kuttruff’s original formula to the second order in 𝑙𝑛 𝑅  for small reflection 
coefficients. However, compared to the original formula, the revised formula does not diverge for 
large reflection coefficients. 
 
The revised Kuttruff formula has been inserted as the last line of Tables 1 to 8. However, I did not 
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check whether the revised formula reduces to the general form of Lévy process, though I suspect it 
is the case. 
 
 
6 CONCLUSION 
This study of the general form for a reverberation formula was started in the hope of obtaining 
formulae piloted by dimension. When this idea turned out to be unsuccessful, the profile of the 
probability distribution for short free paths was investigated. Indeed, this probability is proportional 
to path length for very short free paths, therefore vanishes for null paths, contrarily to most 
published distribution of free paths, for example in Kuttruff3. It was thus assumed that Sabine’s 
formula, that relies on a strictly positive probability for null paths, could not be the most general 
reverberation formula and had to be replaced by a revised reverberation formula, the formulation of 
which depends on the standard deviation of the free paths. This is indeed the path followed in this 
paper. 
 
Assuming that the asymptotic distribution of reflections along one single ray controls reverberation, 
which is the case for ergodic enclosures1,2, the generic decay rate for such enclosures is presented 
in Sect. 2.1. It is then simplified according to different assumptions, and the corresponding 
reverberation times are presented for a few enclosures with simple shape, both in 2D and 3D 
cases. Disappointing are the small variations between shape and dimensions, as the piloting factors 
are the mean waiting time and its relative variance. Thus, reverberation does not depend on 
dimension. 
 
There remain to check the different formulae with Monte-Carlo simulations, following Kuttruff’s 
footsteps. This will be the topic of a forthcoming publication. 
 
In conclusion, the present study proves once more that Sabine’s and Eyring reverberation formulae 
are crude approximations that do not take into account the shape of the enclosure. It is however 
possible to improve these formulae, taking into account the relative variance of the free paths, or 
equivalently, the waiting time between two successive reflections. Almost all improved formulae are 
compatible to the generic model of a Lévy process for reflection distribution along any ray; and they 
deliver very similar results as long as the enclosure is not too disproportionate. It is therefore not 
possible to recommend one specific formula, either for reverberation chambers or for auditoria, but 
only that both Sabine’s and Eyring’s formulae should be avoided. 
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