

INCE: 56

MEASUREMENTS AND RATINGS OF ENVIRONMENTAL NOISE IN JAPAN

K Kuno (1), M Omiya (2), Y Mishina (3), Y Oishi (3) & A Hayashi (4)

(1) Faculty of Engineering, Mie University, (2) Nagoya City Environmental Science Research Institute, (3) Daido Institute of Technology, (4) Suzuka University of Medical Science and Technology

1. INTRODUCTION

Japanese environmental quality standards for noise were established in 1971. The standard value is defined by L_{A50} (median value of Aweighted sound level). On the other hand Japanese Industrial Standard employs L_{Aeq} as well as L_{A50} . Thus the difference between these two noise indices must be taken into consideration invariably.

We began to measure environmental noise L_{Aeq} in Nagoya city in 1982. And since 1987 we added to measure L_{A50} as well as L_{Aeq} . Here we report the survey in the city and discuss the criteria for environmental noise based on L_{Aeq} and L_{A50} concerning residents' reactions against noise.

2. SURVEY OF ENVIRONMENTAL NOISE

Nagoya lies midway between Tokyo and Osaka. It has about 2 million population and area of $330\,\mathrm{km^2}$. In various area of the city measurement of environmental noise around residence was made using sound data logger that records noise level over 24 hours. First we divided the city area into approximately 1km square blocks according to longitude and latitude. In the first year we measured at one point a block. Number of measured points amounted to 315. The survey is continuing and about 2000 samples have been collected. Sound data logger used in the first 5 years deals only L_{Aeq} . But we changed the device in 1987 and after that L_{A50} has been obtained simultaneously. In this paper we mainly concern about the samples after 1987.

The whole area of Nagoya is categorized into eight types of land use

n

Table 1. Land use in Nagoya and distribution of samples

Categorized land use	area(km²)	proportion	samples	proportion
1 1 · · · · · · · · · · · · · · · · · ·	- 018	(%)		(%)
Exclusive residence	81.9	25.1	254	21.7
Residence	104.4	32.0	434	37.2
Commercial	47.9	14.7	118	10.1
Industrial	67.2	20.5	348	29.8
Others	25.0	7.7	14	1.2
All	326.4	100.0	1168	100.0

Table 2. Contents of the database

LAGG 1/6 , LASO 1/6	L_{Aeq} and L_{A50} every 10 minutes
Residence	Type and structure of residence
	Living story, structure of window
	Distance to a road and a railway nearby
	Land use, Outstanding noise source
Inhabitant	Sex, Age, Occupation
	Reaction to outside and inside noise
	Sleep disturbance
Secondary calculated data	LAGG24, LAGGM, LAGGD, LAGGE, LAGGN, Ldn, Lden
-	LASO 24, LASO M. LASO D. LASO E. LASO N
Others	L _{A50 24} , L _{A50 M} , L _{A50 D} , L _{A50 E} , L _{A50 N} Date, Time, Weather, Device number, etc.

based on city planning law. We re-classified these into four categories (exclusive residential, residential, commercial, industrial). Numbers of measured points in each category shown in Table 1 are almost proportional to areal ratio.

A sound data logger is hung at porch or other place in the garden to measure typical noise environment of each residence. This device measures sound level every 0.2 second over 10 minutes and calculates L_{Asq} 1/8 and L_{ASO} 1/8. Since this process is repeated over 24 hours, 144 (6/hour x 24) pairs of L_{Aso} 1/8 and L_{ASO} 1/8 are stored into memory.

Just before or after the measurement we recorded some information around the residence such as distance to trunk road, density of buildings etc. At the same time several questions concerning noise environments in and around residence were posed to inhabitants.

3. DATA PROCESSING

After 24 hours measurement, values of L_{Aeq} 16 and L_{A50} 16 in the device are read out by a personal computer. Then all the values are displayed graphically on the screen and checked. After the process L_{Aeq}^{24} , L_{dn} , L_{den} and some other mean values of L_{Aeq} and L_{A50} are calculated as secondary data. A day is divided into Morning (6:00-8:00), Daytime (8:00-19:00), Evening (19:00-22:00) and Nighttime (22:00-6:00) and mean values for each time section are denoted with suffix M,D,E,N such as L_{Aeq} M. Here L_{Aeq} x is a power average but L_{A50} x is an arithmetic average of L_{A50} 16 in time section X. In addition, associated information about inhabitants and their answers to the questionnaire

are coded and fed into the computer by keyboard. All the data is checked again and sent to a database of computation center. So we can analyze the data on both personal computer and large scale computer. The contents of the database are shown in Table 2.

4. NOISE EXPOSURE AROUND RESIDENCE

Noise level varies from moment to moment. Fig.1 shows averaged time patterns of $L_{Aeq~1/6}$ and $L_{A50~1/6}$. Both $L_{Aeq~1/6}$ and $L_{A50~1/6}$ in every 10 minutes are arithmetically averaged over all samples in the city. $L_{Aeq~1/6}$ grows about 12dB from 4:00 to 8:00 and keeps almost constant level 60dB in daytime except for lunch hour. From 18:00 to 2:00 the level decays gradually and holds bottom level 47dB in the midnight. Both patterns are synchronous, but value of $L_{A50~1/6}$ is about 6dB lower.

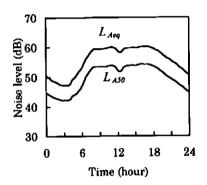


Fig. 1 Time variation of averaged noise level

Table 3 shows the values of noise indices in different time section and land use. To begin with time sections. levels of daytime are the highest and those of night are the lowest. The level differences between day and night are almost 10dB in every land use. This holds for Both L_{Aeq} and L_{A50} . regard to the land use, the highest levels commercial area and the lowest in exclusive residential area excluding "others". And the disparity of land use affects on

Table 3. Averaged L_{Aeq} and L_{A50} classified by land use and time section

		Exclusive Residential	Residential	Commercial	Industrial	Others	(in dB) All
	24	58.0	59.8	61.6	60.7	56.4	59.8
	M	55.2	57.9	60.4	59.2	54.6	58.0
LASO	Ď	60.1	61.7	63.3	62.7	58.6	61.8
~Atq	Ē	56.5	57.9	60.4	58.3	54.0	57.9
	Ñ	50.2	52.7	55.3	53.4	47.3	52.6
	Ĺ	60.6	62.6	64.8	63.5	59.0	62.7
	24	47.1	49.5	52.8	51.2	46.5	49.8
	M	47.1	50.4	53.4	51.9	47.0	50.4
L_{430}	D	50.7	53.1	56.8	55.4	50.1	53.6
DA30	Ē	48.1	50.1	54.1	50.9	47.2	50.3
	N	41.7	44.0	46.9	45.5	41.5	44.2
Samj		254	434	118	348	14	1168

 L_{A50} more conspicuously than on L_{Aeq} .

5. REACTION OF INHABITANTS TO NOISE ENVIRONMENT

Several questions about noise environment in and around residence were posed to inhabitants. The questions concerning exterior noise are listed in Table 4. They ask about loudness(A), noisiness(B), annoyance(C) and mental attitude(D). The distribution of answers to each question are summarized in Fig.2. Here dark gray, light gray and white indicate positive, neutral and negative reaction respectively. About 30% of the people express intense reaction in every question.

6. CRITERIA FOR ENVIRONMENTAL NOISE

As mentioned before the quality standards for environment noise in Japan are based on L_{A50} . Table 5 shows the details. Apart from this, we examine criteria based on L_{Aeq} and L_{A50} with respect to inhabitants' reactions on loudness of outdoor noise. The scaling of reactions has been carried out using various method. In some cases criteria for environmental noise are obtained from noise levels which correspond

Table 4 Questions on noise environment

A How do you find noise around your residence?
1:loud(+) 2:medium(0) 3:low(-)

1:loud(+) 2:medium(0) B Are you annoyed by the noise?

1:very annoyed(+) 2:annoyed(+) 3:little annoyed(0) 4:not annoyed(-)

- C Do you feel it is noisy around your residence? 1:very noisy(+) 2:pretty noisy(+) 3:noisy(+) 4:little noisy(0) 5:quiet(-) 6:very quiet(-)
- D What do you think about the noise?

1:should be abated(+) 2:desirable to be abated(+) 3:pay no much attention(0) 4:pay no attention(-)

Answers are labeled as follows, according to degree of complaints:

(+) :positive reaction (0):neutral reaction (-):negative reaction

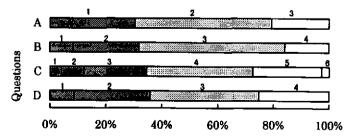


Fig.2 Response rate to each question on Table 4.

Table 5	Japanese	en	vironmental	quality	standards	for	noise b	ased
	_	44	150					

OH LASO	(ш шр)		
Category of area		Time division	
n:lanes	Daytime	Morning	Nighttime
		Evening	_
General area	Not more than	Not more than	Not more than
AA	45	40	35
A	50	50 45	
В	60	55	50
Roadeide area	Not more than	Not more than	Not more than
A $n=2$	55	50	45
A n≧3	60	55	50
B n≦2	65	60	55
B n≧3	65	65	60

Note. Standard values vary according to the area type. Therefore, classification of areas is left to the discretion of prefectural governors.

AA: Areas which require particular quiet (for instance areas in which medical facilities are concentrated). A: primary residential areas. B: Areas where a substantial number of residences are located among shops and factories.

to 30% in cumulative distributions for annoying inhabitants. That is the level above which 70% of annoying inhabitants exist.

Fig.3 is an example to explain how to decide the level using the answers of question A in table 4. In this case, $52.5dB(L_{A50} D)$ corresponds the level below which there are 30% of inhabitants who fell "loud". In the same way the levels are calculated for every time section and land use and are shown in Table 6. Where one new category "roadside" is added. It includes all samples acquired within 20m from trunk road. And they are excluded from other categories of land use (general area). The values in the table are rounded down by 5dB steps. For reference, levels that correspond to median value of L_{Aeq} and L_{A50} for neutral reaction are also examined. They are consistent with above-mentioned levels with the exception of few values shown in parenthesis in Table 6.

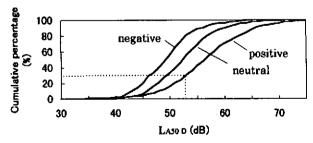


Fig.3 Cumulative distribution of L_{A50D} in each reaction to "loudness"

Table 6 Proposed criteria for noise environment based on L_{Aeq} and L_{A50} (in dB)

						(iii) (iii)
•	exclusive residential	residential	commercial	industrial	roadside	total
LAeq24	55	55	55	55	65(60)	55
$L_{Aeg}M$	55	55	55	55	65(60)	55
L_{Aeq} D	60	60	60	60	65	60
$L_{Aeq}E$	55	55	55	55	60	55
LAsqN	45(50)	50	50	45	60(55)	50
L_{dn}	60	60	60	60	65	60_
LA50 24	45	45	50	45	55	45
L_{A50} M	45	45	50	45(50)	55	45
$L_{A50\mathrm{D}}$	50	50	50(55)	50	60	50
LASOE	45	45	50	45	55	45
LASON	40	40	40	40	45	40

The results are summarized as follows.

- (1) Level differences of L_{A50} among land use in general area are at most 5dB. Regarding L_{A60} the levels are almost same.
- (2) In many cases levels of L_{A50} and L_{Aeq} in roadside area are higher by about 10dB than those in general area.
- (3) Difference between L_{Aeq} and corresponding L_{A50} is about 10dB.
- (4) Difference between daytime and nighttime is 10dB in common. But the difference in L_{deg} is smaller in roadside area.
- (5) The values of L_{A50} for residential area are consistent with the ones for A area defined by the quality standard for noise in Japan(Table 5). And the values of L_{A50} for roadside area are almost equal to the ones for B area in the above standard.
- (6) Levels higher than 65dB in L_{Aeq} , 60dB in L_{A50} are unacceptable for noise environment irrespective of time of day and area.

7. CONCLUSION

Criteria for environmental noise were examined using the noise levels and inhabitants' reactions that we have surveyed since 1987 in Nagoya. The criteria in L_{A50} are almost consistent with the standards in Japan. However, it is contrary to the standard that there is little difference by land use in "non-roadside" area. The criteria based on L_{Aeq} are consistent with the standards in other countries^[1]. They also confirm the result of our previous study^{[2][3]}.

REFERENCES

- [1] D.Gottlob. Inter noise 94, 43 (1994)
- [2] A.Hayashi, K.Kuno, Y.Mishina, and K.Ikegaya, Inter noise 87,867 (1987)
- [3] K.Kuno, A.Hayashi, Y.Oishi, Y.Mishina, J.S.V., 127,565 (1988)