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1 INTRODUCTION 
 

A knowledge of the sound field radiated by a source mounted on, or close to a surface of finite 
extent is of interest in a variety of situations, for example, the estimation of the output of a 
loudspeaker driver mounted in a cabinet.  Particular details of the source itself apart, the problem 
reduces to one of diffraction from the edges of the mounting surface or baffle.  Traditionally, 
diffraction problems are dealt with using the Geometric Theory of Diffraction (GTD) [1], which gives 
a reliable estimate of the diffraction from a sharp wedge of infinite length in the limit of high 
frequencies, or large distances from the wedge.  The GTD approach is unsuitable however, for mid- 
to low-frequency problems, such as may be encountered in loudspeaker baffles, where the 
diffracting edges may be a few wavelengths long or smaller.  More recently, powerful, but 
computationally-expensive, numerical methods such as the Boundary Element Method (BEM) have 
been applied successfully to diffraction problems of this type [2]. 

 

A study of the literature on the subject of edge diffraction [2] reveals that the complexity of the 
analysis overshadows the apparent physical simplicity of the problem, and that a simpler approach 
may be more relevant for many practical diffraction problems (indeed it is shown in [2] that this very 
complexity has given rise to a deal of unnecessary confusion over the interpretation of the analysis).  
Attempts to simplify the use of the GTD, by dividing the edges into finite-length elements [3] have 
gone some way toward a simpler solution, but this method is still not really suitable for low-frequency 
problems due to its reliance on the GTD.  An alternative formulation, proposed by Svensson [4], is 
based on the Biot - Tolstoy exact formulation [5] and, as with [3], permits the division of the edges 
into finite-length elements along the lines of Medwin [6].  This method does not suffer the high-
frequency limitations of the GTD-based methods and probably represents the current state-of-the-
art in edge diffraction prediction models; it has more recently been successfully applied to room 
acoustics simulations [7].  Although very general and accurate, the Svensson method is still very 
complex and hides, to some extent, the apparent physical simplicity of the problem, particularly for 
the finite-baffled source problem described above.   

 

This paper introduces a simple method for tackling diffraction problems when the source is mounted 
on a baffle of finite extent.  It begins by considering the simple case of a compact source mounted 
on a small baffle radiating very low frequencies.  A number of facts, based on observations about 
this system, are then used to build the more general model.  The resulting model can be used to 
yield good estimates of the diffracted sound field at low to high frequencies for sources on baffles of 
arbitrary shape and size. 
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2 THE STRENGTH OF THE TOTAL DIFFRACTED WAVE FIELD 
 

Consider first, a point monopole source mounted on one side of an infinite, plane baffle.  The sound 
waves emitted by the source at position i propagate in a hemispherical manner and the sound 
pressure at any field point x away from the source is given by 

 

where  is the half-space free-field Green function given by 

 

where  is the density of air,  is the sound speed,  is the volume velocity of the source and 
 is the wavenumber where  is the frequency.  If the same monopole is placed on a 

baffle of finite extent, any change in the sound field may be attributed entirely to the presence of the 
diffraction caused by the edges of the finite baffle, thus: 

 

where  is the sound field radiated by the source on the finite baffle and  is the diffracted wave 

field.  In the limit of low frequencies where the wavelength is large compared to the dimensions of 
the finite baffle, the sound field is the same as that of a monopole in free-space: 

 

where  is the full-space free-field Green function given by 

 

Comparing Equations (1) and (4), the pressure field radiated by a source on a small baffle is half of 
the pressure field radiated by the same source when mounted on the infinite baffle.  Thus it follows 
from Equation (3) that, at low frequencies at least, the total diffracted wave field, which is equal to 
the integral of the contribution to the diffracted wave field along the entire length of the edge of the 
finite baffle, is equal to minus one half of the field radiated by the source on the infinite baffle, thus: 

 

where  is the contribution of the diffracted wave field per unit angle subtended from the source in 
the plane of the baffle. 

 

At low frequencies, the relationships in Equations (1), (3) and (6) are independent of the physical 
size or shape of the finite baffle so  can therefore be assumed to be independent of the position 
along the baffle edge and can be taken out of the integral in equation (6).  The value of  can then 
be evaluated: 
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3 THE FREQUENCY DEPENDENCE OF THE DIFFRACTED 
WAVE FIELD 
 

Consider a plane wave incident upon an infinite-length, infinitely-sharp edge.  The strength of the 
diffracted wave field must be independent of the wavelength of the incident plane wave, as the 
shape of the edge remains unchanged with scale.  This being the case, the above argument for low 
frequencies may be extended to higher frequencies as any frequency dependence of the total 
diffracted wave (and indeed, the shadow region in high-frequency ray acoustics) must be entirely 
due to geometry, that is, the interference between the diffracted wave contributions from the 
different parts of the edge.  In the absence of the diffracted field, the relative phase of  at a 
position on the edge depends upon the distance from the source to that point.  It is reasonable 
therefore to assume that the phase of  at a point on the baffle edge is also dependent upon the 
distance from the source as the wave originates from the source and propagates to the edge from 
where it is diffracted.  Defining  per unit angle in Equation (7) rather than per unit length of edge, 
takes care of the reduction in wave amplitude due to spherical spreading.  The diffracted wave 
contribution from any arbitrary shape of baffle and for any frequency may therefore be found by 
dividing the baffle edge into a number of finite-length edge elements, the values of  for which may 
be determined by considering the distance from the source to the element and the angle subtended 
by the element at the source (see Figure 1). 

 

 
Figure 1  An element of the baffle edge subtends an angle at the source.  This angle determines the 

strength of the contribution of that element to the diffracted wave field, and the distance from the 
source to the element determines the phase 

 

4 THE POLARITY OF THE DIFFRACTED WAVE FIELD 
 

Some confusion is apparent in the literature about the relative polarity (phase) of the direct and 
diffracted wave components.  The confusion arises from considering the sound field as divided into 
two regions: the direct region, where the receiver point can be 'seen' by the source, and the shadow 
region, where it cannot.  The direct field is then assumed not to exist in the shadow region, but both 
the direct and diffracted fields interfere in the direct region.  The confusion stems from the fact that 
the diffracted wave needs to have the same polarity as the direct field in the shadow region but 
needs to have reverse polarity in the direct region to destructively interfere with the direct field.  This 
situation leads to a discontinuity in the diffracted wave field at the plane joining the two regions which 
is taken care of by the total absence of a direct field component on the shadow side of the plane. 

 

This representation of two discontinuous sound field components comes from the high-frequency 
approximation that sound waves behave as rays, and cannot, therefore, turn corners; the diffracted 
component therefore becomes necessary to ensure continuity of the total sound field.  A more 
intuitive description of the sound field follows from the low-frequency consideration above.  In this 
case, the direct field always propagates around an edge but in doing so encounters an increase in 
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solid angle into which it is propagating.  This gives rise to a local reduction in pressure which 
propagates away from the edge with negative polarity — the diffracted wave.  This diffracted wave is 
exactly in phase opposition to the direct wave at the edge and thus, everywhere in the shadow 
region it partially cancels the direct wave (which also now emanates from the edge), and everywhere 
in the direct region it interferes with the direct wave (which emanates from the source) as shown in 
figure 2. 

 

 
Figure 2  The negative polarity diffracted wave emanates from the same position as the direct field in 

the 'shadow zone', but spatially-separated from the direct field in the 'direct zone'. 

In the direct region, there will exist path-length differences between the direct wave and the 
diffracted wave giving a complex interference field, but within the shadow region no such path-length 
differences exist and the two waves will be in exact phase opposition everywhere.  As both the direct 
and diffracted waves exist continuously everywhere, there is no need for any sudden transition into 
the shadow region; instead the edge of the shadow region is marked only by the beginning of exact 
phase opposition between the two wave components. 

 

5 IMPLEMENTATION OF THE SIMPLE DIFFRACTION MODEL 
 

The simple diffraction model may be used to simulate the diffraction due to any arbitrary-shaped, 
finite-sized, plane baffle with a sharp right-angled edge.  The edge of the baffle is first divided into 
elements having lengths that are small compared to the shortest wavelength of interest.  For each 
element, the angle subtended from the source is calculated from the positions of the two ends of the 
elements along with the distance from the source to the centre of the element.  Using Equation (7), 
for each frequency of interest the total diffracted sound field radiated to a field point x is estimated 
by summing the contributions of all of the elements at that point, thus: 

 

where θe is the angle subtended at the source at i by edge element e at position e and 
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is evaluated over the distance from i to the field point x via the element at e.  It should be noted that, 
as the edge of the baffle surrounds the source, 

 

so that in the low-frequency limit, .  The total pressure when x is in the 

direct zone is therefore given by Equation (3) above. 

 

When x is in the shadow zone, the sides of the baffle shield some of the edge elements from x, and 
secondary or tertiary edge diffraction would need to be taken into account to estimate the entire 
field.  However, in most cases, these contributions are likely to be small, in which case, 
remembering that the direct and diffracted waves are in phase opposition everywhere in this region, 
the total pressure may be approximated as 

 

where  refers to only those edge elements that are within 'line-of-sight' of x. 

 

6 DISTRIBUTED AND PISTON SOURCES 
 

The simple diffraction model is based on a single point monopole source mounted on an infinite 
baffle with a correction to the radiated pressure field due to the edges of the finite baffle.  Under 
infinite plane baffle conditions, the radiation from complex, distributed sources can be modelled 
using a discrete form of the Rayleigh integral 

 

where the source region is divided into a number of small elemental sources i having volume 
velocities qi, and the individual contributions from each source element are summed at the field point 
of interest x.  For sources mounted on finite baffles the Green functions G are not known in general 
so Equation (11) cannot easily be applied.  However, the diffracted wave fields due to each source 
element may also be summed and added to Equation (11) to yield the total sound field 

 

 

For source regions with regular geometry it may be possible to simplify Equation (12) by exploiting 
analytical expressions for the directivity of the source.  For example, the far-field radiation of a rigid, 
circular piston in an otherwise infinite baffle (read simple loudspeaker model) can be written 

 

where D is the circular piston directivity function given by 

 

where J1 is a Bessel function, a is the radius of the piston and θ  is the angle of point x from the 
piston axis.  Evaluating Equation (14) for θ = π/2 gives an approximate scaling factor for the sound 
field radiated along the baffle towards the edge and hence for the entire diffracted field.  If the baffle 
edge and point x are sufficiently far from the piston, the diffracted field may be approximated as that 
for a single monopole source at the piston centre but scaled by the piston directivity function at 90°, 
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7 RADIATED SOUND POWER ESTIMATES 
 

In addition to estimations of the radiated sound field, the simple diffraction model can be used to 
estimate the radiation impedance and hence the power radiated by a source on a finite-sized baffle.  
For example; measurements of the vibrational velocity of parts of a finite-sized surface could be 
combined with estimates of radiation impedance from the diffraction model to yield the contribution 
of the individual vibrating parts to the total radiated sound power. 

 

This may be achieved by positioning the field point x at the source point i and using the model to 
estimate the diffracted pressure field alone.  The power output of the source on the finite baffle in 
terms of the power output of the same source on an infinite baffle is then given by 

 

where  is the radiation impedance of the source on an infinite baffle, which could be that of a 
piston for example, S is the surface area of that source,  is the diffracted pressure field 

evaluated at the source position using Equation (8), and  refers to the real part.  If the 
wavelength is assumed to be large compared to the source dimensions, the radiation impedance is 
independent of the source geometry and Equation (16) may be reduced to 

 

 

 

8 DISCUSSION 
 

This paper discusses the concepts behind a simple model of baffle edge diffraction and describes a 
way of implementing that model. As the model is based on a low-frequency approximation, it should 
prove particularly useful for assessing the effects of diffraction on the radiation of sound from 
loudspeakers.  At the time of writing, no experimental verification of the model predictions has been 
carried out, although qualitative comparisons with measurements and predictions found in the 
literature (not reported here) have shown promise. A thorough set of verification measurements are 
planned for the near future. 
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