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1 ABSTRACT

Cross-spectrum-based inverse methods can be readily applied to acoustic sources that can be
adequately modelled as a number of discrete monopoles.  However, there are many situations,
particularly in the fields of vibroacoustics and aeroacoustics, where the sources are distributed
continuously in space over a finite area (or volume).  This paper is concerned with the practical
problem of applying inverse methods to such distributed source regions and includes simulations of
spatial sampling criteria, matrix conditioning and some suggestions for optimising source
discetisation.

2 INTRODUCTION

Continuous, distributed acoustic sources are commonplace in the fields of vibroacoustics and
aeroacoustics.  Vibroacoustics is concerned with the radiation or reception of sound by structures
which often consist of shells or plates which support complex and spatially-dependent vibration
fields.  Many aeroacoustic sources are similarly distributed in space.  For simple source
distributions, which can be described in idealised coordinate systems, analytical models of sound
radiation can be used to predict the radiated sound field or used as a source model for inverse
problems.  However, in general, the source region has to be divided into discrete elemental areas
over which the source field is assumed to be uniform, each element is then replaced by a simple
source, such as a monopole or dipole, of equivalent strength.  For this simplification to be valid, the
size and position of the elements must be carefully chosen to minimise errors.  

3 SPATIAL SAMPLING IN THE FORWARD PROBLEM

There is a fundamental difference between the required spatial sampling of source regions for the
forward problem, where a known source distribution is used to estimate the radiated sound field,
and the inverse problem, of interest in this paper, where a known sound field is used to estimate the
source distribution that generates it.  In the forward problem, not all components of the source
distribution may contribute to the radiated sound field.  For example, a plate may vibrate with a
surface wavelength that is small compared with an acoustic wavelength at the same frequency.  In
this case, only parts of the vibration field that are near to the edges of the plate contribute
significantly to the radiated (far) field - the radiation from the rest of the plate being surpressed by
nearby out-of-phase source regions.  If the vibration field is measured at an insufficient number of
discrete points, the estimate of the radiated sound field will be in error due to spatial aliasing of the
vibration field.  Thus spatial sampling of the source region in the forward problem must satisfy both

Vol. 30. Pt.2. 2008

Page 285



Proceedings of the Institute of Acoustics

an acoustic criterion and a source distribution one.

Work on the applications of vibroacoustic reciprocity [1, 2] has shown that errors due to spatial
aliasing of the vibration field can be very significant when dealing with the sound radiated by
complex structures, and that they can be minimised if spatial averaging of the vibration field is
carried out.  Figure 1 shows the results of a computer simulation of the sound field radiated by a
thin vibrating plate excited by a point force.  In this simulation, the sound field is estimated from a
knowledge of the vibration of the plate and compared with a mode-based analytic solution of the
same (see [1]).  The plate is divided into a number of elements with centres spaced 80mm apart —
about half an acoustic wavelength at 2kHz — and the sound field estimated using a discrete
approximation to the Rayleigh Integral,

pm = j 
ωρ0

2π ∑
n

un Sn

rm,n
 e−jωrm,n/c0  , (1)

where  is the distance from the centre of the elemental area  to the far-field sensor point , and
 is the area of element  having vibration velocity ,  and  are the static density and speed of

sound and  is the angular frequency of interest.

rm,n n m
Sn n un ρ0 c0

ω

In Figure 1, the mean error in the estimate of the radiated sound field when the vibration is assumed
to be known only at points at the centre of each element is compared to that when the vibration field
is integrated over each element prior to application of Equation (1).  The point sampled estimate
shows very high errors even though the sample spacing is within the normally-accepted Nyquist
criterion of 2 samples per acoustic wavelength.  The reduction in error when the point-sampled
vibrations are replaced by area-integrated ones demonstrates that most of the error is due to spatial
aliasing of the vibration (source) field.  If these errors in the forward problem are to be minimised,
the spatial details of the source field, as well as the acoustic field need to be taken into account in
any source sampling decisions.
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Figure 1  Mean Error in the Estimate of the Sound Field Radiated by a Thin Vibrating Plate Excited
by a Point Force using Point−Sampled and Area-Integrated Vibration Velocities Spaced 80mm

Apart
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4 SPATIAL SAMPLING IN THE INVERSE PROBLEM

In contrast to the forward problem, when applying inverse methods to distributed source problems,
both the spatial sampling of the sensors and the assumed source positions have to be taken into
account.  However, in many cases it may be accepted at the outset that non-radiating source
components are of no interest, as they may not contribute to the sound field at the sensors.  In
these cases only acoustic spatial sampling criteria need be applied and only those source
components that contribute to sound radiation are then quantified.  This section details some
computer simulations carried out in order to identify the source sampling criteria required for
application of the inverse method to different types of source regions.

4.1 Continuous Line Sources

Consider a line source of length L positioned at the centre of a polar array consisting of 37 sensors
covering 180 degrees at 5 degree increments along an arc of radius 100L.  The line source is
aligned with the −90° and +90° receivers as shown in Figure 2.

90°

0° 5°

−90°
L

L100

Line Source

Figure 2  Geometry for Line Source Simulations

The radiation from the continuous line source is calculated by approximating the line by 1000 point
monopoles, the amplitude, phase and mutual coherence of which are set depending on the source
field of interest and used to generate a source spectral matrix .  The matrix of pressure cross
spectra at the sensors is then

Sqˆ qˆ

Spˆ pˆ = G Sqˆ qˆ  G
H  , (2)

where the superscript  refers to the Hermetian (conjugate) transpose and  is the matrix of (free-
space) Green functions linking each monopole to each receiver according to their relative positions,
thus:

H G

gm,n = j 
ωρ0

4π
 
e−jωrm,n/c0

rm,n
  , (3)

The purpose of this simulation is to investigate the errors associated with discretisation of the
continuous source.  To this end, the line source is divided into a small number of elemental sources
and the inverse method is applied to the pressure cross spectra defined in Equation (2) to yield an
estimate of a simplified source cross-spectral matrix
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S̃qˆ qˆ = G̃+ Spˆ pˆ  G̃
+H  , (4)

where  is the pseudo inverse of the simplified Green function matrix  which links the centre of
each source element to each receiver.  An estimate of the pressures at the sensors using the
simplified source distribution is then

G̃+ G̃

S̃pˆ pˆ = G̃ S̃qˆ qˆ  G̃
H  , (5)

which can be compared to the exact radiated field from Equation (2) to give a means square dB
error between the exact and reconstructed pressure fields, thus:

error =
1
M ∑

M

m = 1

10 log10 {|p˜ m,m

pm,m|}   dB. (6)

where  is the mth diagonal component of  etc., and M is the number of sensors.  This error is
then investigated for a number of different source element sizes and source field descriptions.

p˜ m,m S̃pˆ pˆ

4.1.1 Deterministic Line Sources

Many real line sources have a source strength amplitude that is uniform along the length of the
source but a phase distribution that corresponds to that of a travelling wave(s).  Travelling waves
that propagate with phase speeds much greater than the speed of sound radiate sound as if the
whole line were in phase, those with speeds comparable with the speed of sound radiate sound at
an angle to the line, and those having speeds much lower than the speed of sound are inefficient
radiators of sound [3].  It is therefore reasonable to expect that the phase speed of the travelling
wave will have a bearing on the errors introduced when the source distribution is sampled.  Figures
3a—d show the dB error in the reconstructed pressure field as a function of non-dimensional
frequency  using 8 source elements and source phase speeds of 100c0, 2c0, c0 and c0/2
respectively. Figures 4a—d show the dB error in the reconstructed pressure field as a function of
non-dimensional frequency for a source phase speed of 2c0 when the number of source elements is
2, 4, 8 and 16 respectively.

kL (= ωL / c0)

The example results shown in Figures 3 and 4, along with a number of similar results (not shown
here), demonstrate that the error in the reconstructed sound field is strongly dependent upon
frequency, but only weakly dependent upon the speed of the source travelling wave.  There are two
frequency regions on each plot separated by a fairly steep cut-off.  The error in the reconstructed
sound field changes from low values below the cut-off to high values above it.  If the cut-off
frequency is defined as that frequency where the error is 3dB, the mean value of cut-off frequency
corresponds to the non-dimensional value of , where  is the length of a single
element, with a range of 1·25 to 2·5.  These numbers correspond approximately to wavelength-to-
element length ratios of , with a mean of about 3 elements per wavelength.  It is
interesting to note that the lower figure accords with the Nyquist criterion for sampling waveforms
and the higher figure the minimum number of elements-per-wavelength recommended for numerical
(BEM, FEM) acoustics modelling.

ωδx / c0 ≈ 2 δx

5 > λ / δx > 2·5
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Figure 3  dB error in Reconstructed Pressure for 8 Source Elements for Various Source Travelling
Wave Phase Speeds
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Figure 4  dB error in Reconstructed Pressure for a Source Travelling Wave Speed of 2c0 for Various
Numbers of Source Elements
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4.1.2 Stochastic Line Sources

Many aeroacoustic sources can be modelled as a stochastic line source.  In this case, the
correlation length of the source may be short compared to the length of the source, or even zero.
For this type of source distribution, the source cross-spectral matrix takes the form of a diagonal
band, the width of which is determined by the correlation length (note width of one for zero
correlation length).  Simulations similar to those in section 4.1.1 show that the cut-off frequency
observed above for deterministic sources is independent of correlation length and that the error
above cut-off increases with increasing correlation length.  The spatial sampling criterion identified
above for deterministic line sources can therefore also be applied to stochastic line sources.

4.2 Continuous Plane Surface Sources

In this section, the simulations detailed above for line sources are extended to plane
(2 dimensional) source distributions.  Figures 5a and 5b shows the error in the reconstructed sound
field as a function of non-dimensional frequency when a square source surface of side length L is
divided into 4 and 16 source elements respectively.  The source distribution is deterministic with
wave speeds across the plane of 100c0.
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Figure 5  dB Error in Far-Field Sound Pressure for a Continuous Deterministic Plane Surface
Source with  for different numbers of source elements.cx = cy = 100c0

A comparison between Figure 5 and Figures 3 and 4 shows that the spatial sampling criterion
identified for line sources can also be applied to plane surface sources.

5 MATRIX CONDITIONING AND SPATIAL SAMPLING

All of the simulations presented so far have been the results of processing perfect, noise- and error-
free data limited only by machine precision.  In reality, data taken from measurements will contain
uncertainties, and the importance or otherwise of these uncertainties can be estimated by
considering the condition number of the Green function matrix which is inverted [4, 5, 6].  Figure 6
shows the condition number of the Green function matrix for the continuous plane source simulation
in Section 4.2 above for the 16 source element case.

A comparison between Figures 5b and 6 show that the reduction in error in the reconstructed sound
field at low frequencies is accompanied by a rise in the condition number of the Green function
matrix.  For a given source element size, there is a narrow range of frequencies over which the
errors due to spatial aliasing are small and the condition numbers are low.  If the source elements
are too small, the individual Green functions in the matrix will be too similar to each other, the
condition number will be high, and the success of the inversion process will be sensitive to
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uncertainties in the data.  If the source elements are too large, errors in the reconstruction of the
radiated pressure field will occur due to spatial aliasing.  Applying the ’safe’ spatial sampling
criterion of  from Section 4 leads to condition numbers of greater than 1000 in this case,
which may be too high for use with real data; however, applying  (equivalent to 2·5
elements per wavelength) leads to more acceptable condition numbers.
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Figure 6  Condition Number of the Green Function Matrix for the Simulated Plane Surface Source
with 16 Source Elements

6 OPTIMISING SOURCE SPACING

In order to minimise the errors associated with data uncertainty and spatial aliasing, the size of the
source elements must be optimised for the particular frequency of interest.  If a large number of
small elements are chosen to minimise spatial aliasing at high frequencies, the requirements for a
smaller number of larger elements at low frequencies can be realised either by grouping elements
together, or by improving the conditioning of the Green function matrix using regularisation or by
discarding small singular values [4, 5, 6].

7 CONCLUSIONS

• Computer simulations of the errors associated with the application of inverse methods to
continuous distributed sources have revealed criteria for choosing the optimum element
size.

• Investigations into deterministic and stochastic line sources and deterministic plane
sources have shown that for the inverse problem, the optimum spatial sampling is largely
independent of the source structure or geometry.

• Consideration of the sensitivity of the matrix inversion process to uncertainties in data via
condition numbers indicates that the source element size must be optimised for the
frequency of interest.

• The optimum spatial sampling criterion for the examples investigated here is 2·5
elements per wavelength.
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