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1  INTRODUCTION

Automated target recognition (ATR) in high resolution sonar imagery has been the topic of significant
research for more than a decade, with some systems being employed as an integral part of operational
minehunting systems. Most systems end up failing by many standard measures of effectiveness, either
as operator aids or as fully automated solutions (such as those being considered for AUVs
(autonomous underwater vehicles)). The poor ATR performance can be due to poor data quality, due to
limitations of the sonar or the environment but sometimes also to inappropriate concepts of use.

After a quick review of basic issues relative to target recognition with high resolution sonar, the issue of
performance prediction is addressed. This important issue is often overlooked in both radar and sonar
ATR research and, as a result, there is an acute need for the development of a theoretical foundation
for performance prediction and evaluation. As an example of this approach, theoretical bounds for the
performance of shadow based ATR are recalled. This provides significant insight into the intrinsic.
performance limitations of existing systems and the operational benefits which can be expected from
improved sensors, in particular wideband interferometric synthetic aperture sonar (InSAS). Another
promising approach is to work towards increased autonomy, i.e. to exploit platform maneuvers and on-
board decision making to collect sufficient information on the target to allow reliable recognition.

2 MINEHUNTING‘SONAR ATR

Traditional ATRs were designed with the objective of finding signals in noise using a set of techniques
known collectively as signal detection theory'. When the sensor resolution is low enough so that target:
can be modeled as a single point scatterer and detection is limited by electrical noise in the system
which follows a known statistical distribution (e.g. Gaussian white noise), a hypothesis test can be used
to make a decision as to whether or not a target is present with detection performance typically set by
the signal to noise ratio and the desired false-alarm rate. Such detectors have been very successful in
sonar as well as in radar and are optimal within their assumed theoretical framework.
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Fi s different in nature with similar acoustic signatures. The first and third are mock-ups of a truncated cone,
whereas the second and fourth are of naturally occurring rocks. Data gathered using a common off-the-shelf sensor operating at
455 kHz with 20 kHz bandwidth. : .

However, improvements in sensor technology and signal processing have led to large increases in both
resolution and signal to noise ratio with the result that the target is no longer small compared with the
sensor resolution cell and that it has now to be detected against a textured and cluttered background
'(seabed) rather than noise. It should be apparent n the sonar images pictured in Fig.1 that the problem
is far more complex than assumed in the simple statistical theory. It is that of finding every object which
could potentially be a target (detection) and then determining which of these are of sufficient interest to
warrant further attention (classification). , : :

Actually the necessity to go beyond the simple statistical detection theory has been recognized very
early on in the field of minehunting sonar, who has defined systems and-corresponding procedures to
cope with this additional complexity. The traditional minehunting system consists of a-maneuverable
surface ship with at least two different sonars for detection and classification. Typically a detection
sonar is long range forward looking sonar which provides the operator with a fluctuating sequence of
echoes for each object under investigation. Detected objects are then classified by another operator.
The ship is driven to a specified (much shorter) range to the object, while holding the target on the -
detection sonar to avoid relocation issues. Then the much higher resolution classification sonar is used
to ‘assess additional features of the target (e.g. size, shape as well as its strength). Often multiple
aspects on the target are collected to arrive at a better decision. :

Errors at each stage in the process, depending on their nature, either increase the residual risk (case of
a undetected or misclassified mine) or reduce the efficiency of the operation (case of a non-mine
detected and/or classified as a mine). These operator tasks are made increasingly complex by the
operational requirement to detect and classify targets which are weaker in strength and smaller in size
than. before. o ,
Classification is generally followed by a third step called identification which is similar in nature but is
performed at even shorter range with even higher resolution sensors, usually mounted on a remotely
operated vehicle controlled from the ship. Identification can be a very useful stage in the initial phases
of operation over unknown areas, since it provides ground truth for both real and false targets, allowing
a better understanding a posteriori of their sonar pictures and possible causes for wrong decisions. The
lessons learnt are very important to improve future decisions. : ‘
Operator aids, termed Computer-Aided Detection and Classification (CAD/CAC) have been developed
to assist them in this task. The CAD is basically a multi-ping tracker which is based on statistical
detection theory whereas the CAC performs pattern recognition exploiting features in the highlights
and/or the shadow when available. o ‘ : ; :
Another class of minehunting systems exploits high resolution sidescan sonars which can either be
towed by all types of platforms or even self-propelled. In all current modes of operation the platform.
performs a pre-determined survey pattern which corresponds to a set of parallel tracks, with a spacing
set by the sonar range. The geo-referenced image is formed in this manner is then analysed by an
operator either during the mission or post-mission (depending on the bandwidth available on the
communication link). This mode of operation was historically used for routine survey operations, to
detect changes with respect to prior surveys (e.g. a historical contact data base can be used to detect
new contacts). Automated change detection still presents quite a few challenges however, due to
navigation errors and distortions in the sonar images induced by unwanted platform motions, which
cause ambiguities, and more fundamentally changes in the seabed. .
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More recently, with the mtroductlon of autonomous underwater vehicles, there has been a tendency to
perform minehunting operations over unknown areas with similar pre-programmed sidescan surveys.

Due to the limited bandwidth available for underwater communications, the data is analysed post-
mission by an operator whose task is now very challenging. Indeed, unlike the previous ship-based
systems, the detection and classification has now to be performed on a single sonar image, with no .
possibility for the operator to interact with the system to collect additional data on the contact. In
addition the identification phase is generally conducted separately, with no feedback into the
classification process.

Operator aids, known as post-mission analysis tools, are being actively investigated to assist the
operator in this difficult task. They are sometimes also known as CAD/CAC, like the operator aids used
for the ship-based forward-looking systems which is rather confusing since they differ significantly in
both design and use. The present level of performance achieved by these aids is not considered
satisfactory. Meeting the desired goal will require going well beyond improvements in. pattern
recognition technology alone, to include order of magnitude improvements of the quantity and quality of
information provided at the input of the operator aid. In addition to sensor improvement, discussed
below, this may include means to restore a much higher level of interaction between the sensing and
the decision-making. Due to intrinsic limitations of underwater communication links, it.is likely that the
largest part of this interaction has to be done on-board the vehicle with little or no human interaction.

The introduction of autonomy is not specific to minehunting systems and similar issues are being
addressed for other areas including aerial surveillance.by UAVs. However some simplifying features of
the minehunting application make it an attractive area to test autonomy concepts. The targets are
inherently static which considerably simplifies the information collection process. Indeed by displacing a
single AUV at various appropriately chosen spatial locations and memorizing the sensor and navigation
data, one forms ‘a “synthetic ‘autonomous sampling network” from which it should be possible to
produce a high quality picture of the target. Of course this could also be achieved in principle with a real
network of AUVs (for a moving target this would be the only option) but only with a step increase in
complexity related to the communications, navigation and water space management overheads.

3 SENSOR LEVEL IMPROVEMENTS

Ultimately, all ATR methods attempt to estimate the joint distribution of the acoustlc signatures (or
features derived from it) and the target classes of interest. Formally, the marginal distribution P(X|Y)
defines the probability that a given d length vector of measurements X will be observed for a target of
the class ¥. For the sonar problem, the measurements X are obtained from an acoustic image and the
class is the target / non-target task or targets subcategorized into finer classes of more specific target
types. These class-conditional probabilites P(X|Y;) are important in determining the possible -
performance of an ATR system. Any overlap in these distributions will result in unavoidable

classification errors.” The best achlevable probablllty of error is called the Bayes error rate, defined as
14-

=1 [ max P(y,)p(x| y,)dx

where P(X|T) is the margmal distribution of the set of measurements .Y for class i. This integral is
performed over the entire d-dimensional feature space and L*= 0 when all P(X|Y;) = O for a single class
Jj, with equality for all other classes, i.e. when there is no overlap between the classes in feature space.
The Bayes error rate is the theoretical limit for any classification method, automatic or otherwise.

As in most problems of this type, the P(X]Y)) are not known and so must be learned using data from past
measurements or somehow assumed using a priori knowledge of the problem. A well-known property of
learning algorithms is that the number of training samples n must be exponential in d to achieve
~ consistent error rates. Many systems employ feature reduction techniques to reduce 4 to a
manageable number but any such method which does not test all possible subsets of 4 are suboptimal
for some distributions of (X, ¥), making for a combinatorial time complexity and so prohibitive for large
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values of d (see Devroye et. al. pp 562-563). The problem is aggravated by the number of degrees of
freedom in the target class. Even in the favourable case when it is known in advance which target one -
is looking for, the target signature can exhibit a high variability due to changes in the geometry of the
scene, or complex interactions between the target and the seabed such as shadows on sand ripple |
fields. : ~ :
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Figure 2 Predicted performance for an easy shadow classification task for low, medium and high contrast ratio with the
background. The Bayes probability of error (L*) is shown versus the square root of the number of independent pixels on target (if
square pixels are assumed, this is the number of along-track pixels). For a high contrast sensor at least 7 along-track pixels on
target are required for reliable performance (95%).

As a result, features of non-isotropic targets become distinct enough to effectively spread the marginal
distribution of X, decreasing the predictive ability of any feature. ' o
Results have been reported on object detection and clutter rejection in high resolution sidescan images
employing a correlation between a mask of a target-like signature as a detection method, with
performance claimed to be similar to that of a human operator for the same task?. In areas of high
clutter, more discrimination is required, achieved by additional filtering of non-target signatures. Since a
parametric model of the clutter is difficult to develop due to the large number of degrees of freedom and
consequently number of samples required, non-parametric methods are common: for instance, work
has been done with neural networks 3 4, decision trees ¢ and support vector machines & 7 differing
chiefly in the features being used as inputs. Multiple classifiers are occasionally fused (usually at the
decision level) together based on the belief that most classification methods are able to accurately
* predict the target classes whiile false positives, appearing more randomly, tend to differ from method to
method 8, thus reducing the false alarm rate while maintaining high classification performance. Other
learning methods such as active and semi-supervised learning have been employed to increase the
convergence of the learning algorithm ®. ‘ '
Model-based approaches!® 1. 12, attempt to remove this dependency, however in addition to the cost of
repeatedly of running a forward model over all possible combinations of aspects and burial state in 3D,
the variability of the projected 2D model results in being able to match almost any candidate signature.

The sonar imagery itself presents some considerable difficulties in processing which are still somewhat
underestimated. For classification, sonar images are segmented into 'regions of shadow and echo for
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the computation of features or model-matching 61913, However even on a flat, featureless seabed, the
coherent nature of the acoustic imaging makes segmentation significantly more complex than for
incoherent imaging sensors, such as optical or infrared sensors. The pixel amplitudes follow noise-like
speckle distributions (e.g. Rice-Rayleigh) which cause estimation noise in the boundary regions and
lead to imperfect segmentation, and those errors are propagated into the feature extraction step. The
estimation noise can only be combated by increasing the sonar resolution beyond what would be strictly
necessary to achieve target recognition, using criteria suited for incoherent imaging systems®.

Myers and Pintos established bounds on L* for the sonar ATR based on shadow classification using
information theory (see Fig 2). They defined a simple sonar classification task and derived the Bayes
error rate for a range of image resolutions and shadow to background contrast ratios. They concluded
that for even this simple task with a high contrast approximately 7-8 independent along-track pixels
would be required for high probabilities of classificationt, with decreasing performance as resolution and
contrast worsened. This is much higher resolution than that of most, if not all, sidescan sonars in

operation. More complex shape definitions will result in a further decrease in performance. “This effect -

has been confirmed using simulated targets on real data, where automatic detection algorithms

performed with varying success and depended greatly on seabed orientation, even for isotropic targets
17 : .
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Figure 3 Cross-range resolution as a function of range for a COTS dual frequency sidescan sonar commonly used for AUV-
based sidescan surveys. For a target size varying between 0.5m and 1m, meeting the Myers-Pinto criteria requires operation at
less than 10m range. In comparison (blue) theoretical resolution of a prototype AUV-based synthetic aperture system under
development at NURC called MUSCLE. -

4 CONCLUSIONS

T For example Johnson's criteria derived for night-vision systems!'®.
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Automatic Target Recognition for high resolution sonar imagery presents a challenglng task for system
developers due partly to some of the issues which have been described above. In addition to being
vulnerable to the same difficulties that other automated classification systems face there are additional
limitations given by the sensor, the environment and ambiguities in the target classes. _
There is evidence that the performance expected from ATR is significantly above what is theoretically
.- achievable with the systems and procedures in place, a fortiori what is achievable in practice. In this
case, significant improvement in ATR performance must come from an increase in the quality of
information input to the ATR, rather than improvements in the ATR itself. Fortunately recent advances
in sonar technology, such as wideband sonar, synthetic aperture sonar, interferometric sonar and
combinations thereof, aliow a step change in the quality of sonar data which, if appropriately exploited,
- should enable this ATR improvement. However interpretation of high resolution sonar imagery is not as
mature as it may seem and may have to be revisited in connection with sensor developments.
Furthermore the excellent navigation performance offered at a reasonable cost by inertial navigation
systems is also an important enabler, since this allows precise association of surveys carried out at
different headings. It also seems important o restore means to achieve with AUVs a much higher level
of interaction between the sensing and the decision-making. This is the challenge facing the next
generation of truly autonomous minehunting systems.

Finally, a measure of the performance actually achieved by the system will always be required. There is
a tendency to evaluate ATR performance by comparison to that of operators which can then bias the
results’®. The use of objective ground truth would allow a more accurate estimation.
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