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1. INTRODUCTION

This paper presents a summary of the state of the art in speaker recognition, giving an
view of the main classes of techniques researchers are now investigating. Before
proceeding with the paper a summary of terminology may be useful. We define as
follows the main terms used in the field:

Speaker venficaiion The act of deciding whether an utterance from an
unknown speaker was made by a specific speaker or
not, an open set problem.

Spmker identification The act of deciding which of a group of speakers
made an utterance from an unknown speaker,
a closed set problem.

Speaker Recognition Either of the above.
Text Dependent System A system in which the speaker is required to or is

known to have uttered a known text.
Teri Independent System A system in which the speakers utterance is an

unknown text

For reasons of brevity we shall mainly diSCuss text independent speaker verification in
this paper. Speaker identification systems are usually required to deal with the case
where the unknown speaker is not one of the set equating the system to a multiple
speaker verification system. Text dependent systems can be regarded as special cases
of text independent systems where the statistics of the ’unknown' speech are
predetermined. The main elements of a typical system are shown in Figure 1. A
feature extractor is used to produce a set of features 0 = O,...O,....O.- which are applied
to a pattern matching algorithm. The algorithm has access to speaker specific
information derived from some training material which allows the building of an
explicit or implicit speaker model, up. We can then estimate the probability of the
observations given the model, p(0| up), for each speaker of interst. '

The pattern matching tectmiques used in speaker verification differ in the way this
likelihood is estimated. An important distinction exists between those techniques for
which

1‘ 1'

p(0 I ma) = 1—1pm: l nu) or in the log domainp(0 l nu) = 2pm. I nu) ........... ..(1)
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Proc.l.0.A. Vol 18 Part 9 (1996)

“i



 

Proceedings of the institute of Acoustics

SPEAKER VERIFICATION.

 

  

 

Statistical

_ Speech Features Likelihoods Score or Decision

' Figure l. The Verification System

that is the likelihood of the whole sequence is simply the product of the likelihood of
the individual frames, and those for which a more complicated formulation is used. In
the former case, for example the vector quantiser the ordering of the sequence is
immaterial. However for a Hidden Markov Model (HMM) system this is not the case

as the temporal ordering of the frames affect the estimate of p(0 I try). In the remainder
of this paper we first review techniques for feature extraction and then examine a
number of pattern matching methods.

2. FEATURE SELECTION

2.1 Spectral Estimation.
Methods of spectral estimation closely follow thoseused in speech recognition. An
estimate of the spectrum of the speech is produced at a frame rate of 10-20ms by Linear
Prediction analysis, a fit or filterbank and these are orthogonalized by a discrete cosine
transform to give linear or mel scale oepstral coefficients. Some authors have found
that perceptually based linear prediction can be used to advantagell].

2.2 Trqnsitional Features.
As in speech recognition linear and quadratic estimates of the trend of the spectrum
represented as estimates of the first and second derivatives of the cepstra are sometimes
included in the feature vector[2]. The exact benefit ofincluding these features

particularly the second derivatives has not been firmly established. Our results
indicate that when the parameters of the model corresponding to these features are
well estimated they can increase the performance of the system. However with small
amounts of training data this is sometimes not easy to do.

2.3 Channel Nomiall'satian and Feature Transfurrmtians.
For systems working through variable communications channels such as the public
switched telephone network a method of correcting for handset and channel variations
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is required. This is frequently achieved by cepstral mean subtraction (CMS), that is
estimating the means of the features, cepstra, over each segment of speech and

- subtracting the mean from the instantaneous estimate of the features hence removing
the effect of the static channel[3].

Many of the channel variabilities arise from the differing characteristics of telephone
handsets. Where these diaracteristics are linear and time invariant CMS can correct for
them. However the continued use of carbon microphones particularly in the USA leads
to non-linear and time variant distortionm. To date it has not been found possible to
correct for this during feature analysis.

Linear Discinunant Analysis (LDA)[5,6] has been shown to be a worthwhile means of
increasing the accuracy of speech recognisers. In that case the states or mixture
components of the word models are treated as separate classes with intraclass
variability being caused in part by inter-speaker differences. Unfortunately in speaker
verification it is these intraclass differences which are important. While a [DA
transform trained for speech recognition can be used for speaker verification by
omitting the lowest, most significant dimensions for speech recognition, little
advantage appears to result. Other methods of estimating transformations for speaker
recognition have not been widely researched.

2. 4 Pitch
The use of the pitch of a speaker's voice for discrimination between speakers was the
subject of research in the 1970’s[7,8]. Research was subsequently directed towards the
use of cepstral methods. Interest in its use has recently been growing but as an adjunct
to other techniques as it provides additional speaker discriminative'informationfl.
Previously the pitch contour estimated frame by frame had been used as a feature
vector. Now however more robust techniques such as the mean and variance of the
pitch estimated over an utterance have been used as features [9].

3. VECTORQUANTISEFS

In Vector Quantiser systems each speaker is modelled by a codebook of vectors[10].
The codeka is trained using the Linde, Buzo and Gray algorithmlll] which attempts
to minimise the global distances between the training vectors and their nearest
codebook entry. The distance between feature vectors is defimd as:

K

d(X. Y) = 20:, —~Y,)’ .......................................................................(z)
hl

In verification the nearest codebook entry, a“, to each input frame is found and the
distance from the input to that entry is accumulated into the overall score,

I'

nor Im,) = Zm‘in(d(a,'l,0,)).: ..............................................................(3)
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The essence of the technique is to use the LES algorithm to find a set of codebook
entries which model the speakers training vectors in the hyper-volumes of the features
space in which they occur. '

4. NEURAL NETWORKS

At least three types of neural net techniques have beenresearched, the Multi-layer
Perceptron(MLP)[12], Radial Basis Functions(RB_F)[13] and more recently the Neural

Tree Network[l4]. Time and space do not permit a detailed description of these

techniques for which the interested reader is referred to the references. However the
REF has an interesting relation to the Vector Quantiser and the Gaussian Mixture
Model. The RBF comprises a set of hidden units which are typically gaussian. The
output of the network is the linearly weighted sum of the outputs of these units. Hence
we have

T .

. p(0flull)=22wuexp(d(au.0,))-I; ......................................................(4)
ml 1

where T, is a bias term and w” are the network weights. The RBF replaces the min. in
the vector quantiser with aweighted sum of gaussians. The network is initialised by
finding the centroids of the basis functions by clustering as in the vector quantiser.
Training can then be carried out by using gradient descent to find values of the weights
which optimally discriminate between the target speaker and impostors.

5. GAUSSIAN MDCflJRE MODELS

Gaussian Mixture Models(GMMs)[15] can be regarded as single state HMMs with a

large number of mixture components, 128 or 756 are common and a unity self transition
probability. Each speaker is modelled by a multivariate gaussian density in the feature
space. It is universally acknowledged that the off diagonal components of the cepstral
covariance matrix must be close to zero. Hence a diagonal covariance matrix is
assumed, and the frame probability is given by

-l Wu 1 l r

p(0,|m,)—§2udetzexp§ 2£1th am) (0,, am) ...............................(5)

  

The relation with the vector quantiser and the REF network is clear since again we have ‘
weighted sums of gaussians. The GMM however has variances which are not
necessarily unity and the training of the system takes a different form. Maximum
likelihood training using some form of the Expectation Maximisation algorithm is used.
The Baum-Welch algorithm is a popular choice. Good results have also been achieved
with maximum a priori (MAP) estimation and unsupervised learning. The training
unlike that of the REF network is not discriminative.
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6. HIDDEN MARKOV MODELS

6.1 Model Topologies
Hidden Markov Model systems have been used extensively in text dependent systems
where word or phrase models can be constructed from training data comprising the
known text[15,16]. In text independent systems[17,18,19] researchers have used
subword models based on phone sized units. The subword units used can either be
based on the full set of phonemes of the language or on a reduced set for example
broad classes. Typically three state left to right models with no skips are used. The
systems use continuous gaussian densities with diagonal covariances. The chief
difference between these systems and the GMM systems is that the HMM imposes
temporal constraints on the succession of densities matches both during testing and
training.

6.2 Parameter Estimation
Maximum likelihood training using some form of the Expectation Maximisation
algorithm is used. The Baum-Welch algorithm is the usual method. Good results have
also been achieved with maximum a priori (MAP) estimation.

6.3 Pattern Matching
The pattern matching technique can take one of several forms. Generally the Viterbi
algorithm is used to find the sequence of models which best explains the test utterance.
The speakers score, p(0|m;), is then the likelihood along this path. While this can
work well with utter-anus from the true speaker, imposhor utterances can some times
score well by matching improbable sequences of models. This problem has been
addrased by pore-aligning the test utterance to a set of speaker independent models
and then matching the corresponding speaker dependent models to sections of the test
utterance matched to the speaker independent model. Alternatively the independent
and dependent models can be combined into a single set allowing a combination of the
two tobematchedtothetestutterance.fliespeakerscoreisthentheproporfionofthe
total models matched.

7 DECISION TECHNIQUES

7.1 Nommll'satian.
Normalisation is now considered a key requirement in speaker verification systems. '
The reader may recall from the introduction that we have estimated p(ot nu) but we
should use p(nul0) the probability or likelihood of the model given the observations.
These are related by Bayes theorem,

= 2(0lmi)g(nu)POW | 0) [1(0)
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Usually the prior probability of the speaker pore) is assumed to be the same for all
speakers and is disregarded. Also p(0) = g p(0| ma)” Hence we have

e(0 | Mi)
)1: p(0l nu)

Now 2p(0lnu) is the sum of the likelihoods for all possible speakers, a normalisation
l

P(nv|0)=

of p(0|Inj). The exact evaluation of p(0) is clearly impossible Therefore two
approximations to this have beenproposed. The first relies on the observation that
MOM!) will be small for all but a small set of similar speakers and that the
approximation )F‘.p(0|nu)=s‘§p(0lnu) can be made. The set A is referred to as the

'cohott’ of speakerj and the verification score is modified by the cohort score[16]. The
other approach is to construct a 'world’ or 'general' model M which may for example
be speaker independent model (M) in the case of a Hidden Markov Modelsystem[15].

We then have p(nv|0)=%%. that is the world model score normalises the

speaker’s score. This has been found to work well inpractice and to perform better than
the same systems using cohorts[20].

7.2 Handset Modelling
While Cepstral Mean Normalisation reduces the linear effects of handset variability
problems arise when carbon microphones are used since they produce non-linear
dishor’don of the speech waveform. This produces inter-modulation components in the
spectrum which manifest themselves as additional spectral components particularly
observable at low levels. Although telephones with carbon microphones are now a
rarity in the British public switched telephone network this is not the case in the USA.
Also a similar type of distortion can be introduced by speech coding algorithms such as
the ones used in digital mobile telephones. While the solution tothis problem may be a
feature set which is unaffected by the presence of this form of no such feature set has
been found to date. The present approach is to detect the mismatch between
microphone types in training and testing and then to vary the value of the
normalisation constant from the default value when a mismatch between training and
testing handset is detected.

8. PERFORMANCE

In trying to describe the performance of speaker verification systems one is confronted
by the problem of test databases. The performance of the algorithms vary substantially
between databases making comparative statements difficult and absolute conclusions
impossible. Nevertheless this is what we shall try to do.

Surprisingly perhaps given the high hopes workers had for MLPs they give the worst
performance of all the techniques discussed. Both VQs and RBFs give superior
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performancelan]. VQs has similar performance to NTNsIZl] but are poorer than
RBFs[13]. However GMMs perform better than VQs provided enough training data is
available[22].

GMMs have also performed better in tests than HMMs as the results of the NIST
evaluations show[23]. The differences between the GMMs and the HMMs are twofold.
The CW uses unsupervised learning and the Hidden Markov Model has temporal
constraints. Tishby[24] however demonstrated that there is speaker specific
information in the state durations and transitions of the HMM. We have carried out
experiments in which distributions estimated forMs using supervised training are
using in a GMM and a HMM. The HMM then has better performance than the GMM
showing that the retention of the durational information improves the results. On the
same data a GMM using distributions estimated for by unsupervised training
performed better than the I-IMM We hypothesise that since the GMM can pool data
from different phonemes to estimate the parameters of a single distribution better
estimates of these parameters are made leading to the superior performance already
noted. This and other aspects of speaker verification require further investigation.

The performance of the best systems on telephone quality speech can best be
demonstrated by quoting the results from the best systems submitted for the NET 1996
evaluation. With two minutes of training speech and 305 test files from the training
handset the systems achieved an equal error rate of 3%. This increases to 5% for 105
testing files and 7% for 35 test. The performance was somewhat worse when the test
files were taken from other handsets. It is interesting to note that the error rate in these
tests has halved between the 1995 and 1996 evaluations.
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