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1. INTRODUCTION

Distributed Mode Loudspeaker (DML) panels have been a focus of considerable interest amongst the

audio and acoustics community for some time. A number of papers have appeared in recent

conference proceedings concerning the design I analysis [eg 1.2] and application [eg 3.4] of these
devices; some of these papers have considered the drive mechanism in some detail [5] whilst applying
a generalised model for the panel which is sometimes approximated as infinite in extent. Other
authors have considered the ‘M' in DML rather more explicitly [6]. but there remains a considerable
body of literature concerning a modal solution for the velocity of finite plates with various boundary
conditions, which may be of use in modelling these transducers.

This paper reports the current progress of investigations at Salford whose aim is to apply classical
plate theory to the modelling of DML panels. with the intention of gaining insight into the behaviour of
the devices and obtaining appropriate physical properties of materials used in their construction.

2. CLASSICAL PLATE THEORY
A useful introduction to the modal behaviour of thin. finite plates is given by Cremer [7]. The approach
is clear. but limited in its restriction to simply supported boundary conditions. A more general review

of published material (up to 1955) is that of Leissa [8] - the first paper quoted in regard to rectangular

plates is that of Warburtcn [9]. and it is with this work that the remainder of this paper is concerned.

Warburtcn deals with the solution of the familiar fourth-order plate equation for transverse velocity w,

not only for simply supported but also for free and clamped boundaries.
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The solution follow the familiar form of the summation of an infinite number of normal modes. and

for point excitation Cremer shows that a damped system may be represented by:

w(x’ 2) =1.“F: 4,452) ¢n(xorzo)

»=- Anrwiu +J’n) «air (2)

where:
F = force input A” = normalisation factor
xoya = exciter location (1),. = modal frequency

x,y = receiver location it = shape function

So, the spatial distribution of velocity over the surface of the plate is described in terms of modeshapes

or eigenvectors, and the resonant frequencies themselves are given by the eigenvalues. Warburtcn
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notes that for simply supported boundaries. the eigenvalues and eigenvectors assume the familiar

form presented elsewhere by Cremer. Spatial velocity distribution is governed by the summation of

a number of sine functions (since the velocity at the plate boundary is zero) and: -
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Where the boundaries are clamped. or free, both eigenvectors and eigenvalues assume a more

complex form. In addition to sine and cos components, spatial velocity distribution requires the

Inclusion of hyperbolic sinh and cosh terms. Warburton gives expressions forthe resonantfrequencies

associated with such boundary conditions. which together with the appropriate shape functions are

reproduced below. Only the result for clamped boundaries is given. since this is the condition used

for the practical measurements in this paper. Modeshapes with a dependence on only one spatial

' coordinate (x) are given - these substitute into (2) after multiplication by a similar function with

Mu) = sin

    

dependence on 2.

= 1 - l i _ 1V¢n(x) cosy[ It 2] +kcoshy[ It 2]

for nJr = 1,3,5... , (58) ‘
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where k’= - ——s“‘(7’2) and tam/I2 —tanh~{’/2 =0

sinh(y’/2)

The resonant frequencies are found from

    

w = 211m2 E "2 6
" 1} 4sp(1—v2) ( a)

where

2 l 41: 21:2Vii. =GJr +G1F + [2 [VHXHZ+(I-V)JXJ1] (6b)

1 Z

and for a plate clamped at all edges

nx =1:

(6c)G, = 1.506 , H, =Jx =1.24s
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n, = 2,3,4...:

6c
a,=(n,+1/2),rL=J,=(n,+1/2)2[1- 2 J ()

(nx + l/2)1r

with similar expressions in z for the other coordinate axis.

These expressions have been evaluated in terms of transfer impedances as a function of frequency

from the excitation point out to some receiver. and in terms of the spatial distribution of velocity over

the surface of a plate. These calculationsare compared to measurements on physical plates in section

4.

3. MEASUREMENTS ON PRACTICAL PLATES

Leissa notes that whilst theoretical papers on the modal behaviour of plates are numerous.

comparisons with measured data are rather harder to obtain. Since the aim of this work is to exploit

published theoretical data as a model for a physical DML system. it is important to establish the

accuracy of the model. To this end, measurements have been performed on physical plates and

compared with the models developed previously.

3.1 Plate excitation and mounting

The derivation of (2) requires the evaluation of the surface-integral of the product of input pressure

distribution. and the modeshape function p":

fjwprrmrmdz
S

(7)
where

r describes location (15,2)

Where the input pressure distribution is simply at one point r, having coordinates (x0, 20) then the

pressure distribution function reduces to a dirac delta function dr-r.) - then by the ‘sifting' property the

shape function effectively comes outside the integral as rpm) . The integral then simply produces the

factor of area required to change the pressure p of (7) to the force F of (2). This makes modelling a

point force input relatively simple - but means that if other force distributions are to be utilised, the

integral (7) must first be solved. This problem is analogous to that encountered when considering the

excitation of room modes by different shaped sources - Builmore [11] shows that for rectangular

sources a solution is tractabie. but the solution for a ring distribution as found on most DMLs where the

exciter voice coil is glued direme to the panel is not straightforward.

in this paper, point excitation models have been compared with measurements made using an exciter

whim operates on a very small area (<7e-6 m“). The practical results might then be expected to de

emphasise modes where the modal bending wavelength approaches the excitation point dimensions

. but given its small size this will be a high frequency problem vmich vvili not affect low-order panel

modes. The model may be extended in future by considering the superposition of a number of point

exciters driven In phase, located on the circumference of a ring.

In addition to choosing an appropriate excitation mechanism. it is important to consider the boundary

conditions of the panel. Warburton gives data for simply-supported, free and clamped edges (and

combinations thereof). Pre-produdlon samples of DML products available at Salford suggest that

practical panels may have boundaries secured intermittently or by compliant supports. Leissa
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suggests methods for the Incorporation of these complex boundaries, but in the first instance it was

decided to adopt a clamped edge to prove the modelling technique and a suitable measurement rig

was constnicted.

3.2 Establishing Physical Parameters

A number of physical constants describing the material from which a panel is constructed must be
known, in order to implement the model. These include Young's Modulus E, thickness h. Poi$on's

ratio v, masslunit area M and loss factor n. The impact of inaccuracies in these coefficients on the
final model varies - for instance. error in E has less of an effect than error in nwhen determining plate

velocity, and uncertainty with regard to loss factors can be highly significant [10].

Unfortunately, accurate data concerning panel materials for DML transducers is not always available.
in particular. the devices are frequently referred to as 'low-lcss’ or 'lightly damped’ [eg. 5] where
inspection suggests this may not always be theme - an assertion which is investigated using thwe
plate models. Of all the parameters mentioned, loss—factor is perhaps least obvious in terms of a

measurement method. Cremer not that it may be extracted from the decay of plate vibrations using
the formula:

2.2
f, R,“ (7)

This requires that the panel be excited at a specific frequency, and thedecaytime measured when that
excitation is removed. A problem with this technique is that the mechanical and electrical damping
inherent in the exciter will influence the decay rate of the plate - altematively timefrequency
techniques may be applied where an impulse response is transformed to frequency using overlapping
windows and the decay time of various frequents] components may be assessed.

 

‘1:

Figure 1 shomthe impulse response of a 286 x 198 x 0.81mm aluminium plate. clamped at the edges
and excited at position (160, 83). A magnetic non-contact pickup was positioned at location (170,60).
The aluminium plate was employed since the physical properties of the material are well known,
meaning that the modelling technique can be assessed with minimal uncertainty as to the input data.
in addition. the aluminum plate is known to be isotropic - for practical DML materials this may not
always be the case, and although Leissa makes suggestions for dealing with anisotropy, the evaluation
of the technique requires the simplest possible model.

'Figure 1 displays a response which is dominated by the decay of the fundamental mode of the plate.
A lossfwtor may be extrapolated at this frequency with some confidence - in this case

Frequency of fundamental mode = 116Hz Loss Factor = 2x102

3.3 Velocity measurements

DML panels are characteristically constructed using lightweight, stiff materials. Velocity measurements
must be carefully contrived so as not to load the panel due to the impedance of the measurement
transducer. In the limit. laser velocimetry offers the ultimate non-contact technique [eg 12], but this
method has not been available at Salford. Instead, lightweight accelerometers (Knowles BU1771)
have been employed; the results obtained have been compared with data collected using non-contact
magnetic pickups (eg. Figure 1). No shift in mode frequencies has been observed, suggesting that the
mass-load applied by the transducers is insignificant (0.289). It was necessary to connect the
accelerometers using extremely fine enamelled wire, in orderto avoid the additional damping imposed
by the PVC coating on conventional cabte.

The results of practical measurements of plate vibration are displayed in section 4.. and are compared
to results obtained using the Warburton model of a clamped plate.
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Figure l v Measured impulse response of clamped aluminium plate

4. RELATING MEASUREMENTS AND MODELS

4.1 Comparison of Warburton model and measured data

Figure 2 shows a graphical comparison between the Warburton model and a practical measurement
on the clamped aluminium plate described in section 3.2. Similar exciter and receiver locations were
used - however a moving-coil shaker replaced the force hammer used previously as an exciter. An
impedance head allowed the trequency—variation of the force input to be removed from the
measurement. Modeorderswereverified between model and measurement using two accelerometers
to perform a modal survey across the surface of the plate.
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Figure 2 - Measured and modelled fi'equency response of clamped aluminium plate

 
A reasonably good match is seen across the displayed bandwidth. As the mass density of the panel

was known. 'best-t'rt’ values for Young’s modulus and damping factor were obtained by optimising this
match. As frequency increases. the model becomes less accurate - perhaps surprisingly, the practll

loss-factor appears to decrease as frequency increases.
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The radiation impedance presented by the fluid to the plate has been oona‘dered. The fluid load has

been represented using two simple, idealised models afler Beranek [13] and Morse [14]. Both depid

the mass loading of an unbaffled. plane circular disk. These have been adapted to accommodate the

rxtangular plate dimensions using an effective equivalent radius. as a first approximation to the load

presented to the fundamental plate mode. In both cases the additional loading did not provide any

substantial change to the predicted fundamental resonance, giving less than 0.1% change in terms of
the fundamental resonant frequency.

Where a material with a higher lowfactor constitutes the ptate material. the fit of the model is rather

less satisfactory. Figure 3 shows data for a plate of similar size to that in Figure 2. made of a fibrous
hardboard-type material Which has been used in production DML panels.
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Figure 3 - Measured and modelled frequency response ofclamped fibre-board plate

The loss—factor appears to increase with frequency, whereas the model assumes a constant value -
a more satisfactory fit would resutt from an assessment of the damping behaviour of the plate against
frequency.

4.2 Spatial velocity distribution and acoustic radiation

As the plate is excited at higher frequencies, and the loss factor increases. modal overtap increases
markedly. In terms of the spatial distribution of velocity over the surface of the plate. this has an
interesting effect. At lower frequencies vmere modal overlap is small. one modeshape dominates the
summation with the result that point velocities tend to be either in phase or 180° out of phase. At
higher trequencies the complex residues of a large number of contributing modeshapes result in a far
less ‘binary' phase-distribution across the plate surface. in practice, this results in displacement
patterns as illustrated in Figure 4.

 

The exciter location experiences maximal disptacement, sumcunded by radially-spreading wavefronts
which propagate across the surface of the plate. Further army from the exciter there exists a
‘reverberant field’ of peaks and troughs. (It would not be correct to refer to this region as 'modal’ as
opposed to a ‘direct' contribution from the source - the “mole spmial displacement distribution of Figure
4 results from the modal summation of (2). with noexplicitly-added direct term.)

This resultcorresponds closely with acoustic measurements made in tonne of the near—field pressure
radiated by production DMLs as a functit'm or distance from the excitation point. The maximal
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Figure 4 - Modelled displacement of clamped fibre-board plate where {=5 kHz

displacement amplitude found at the exciter corresponds to measurably higher sound pressure levels

radiated close to this point. This suggests that rather than a ‘chaotic’ or 'random' behaviour on the

surface of the plate. damping is such that circular wavefronts propagate across the plate surface and

predominate the plate radiation. If the damping coefficient were to be much lessened (such as with

the aluminium plate) the displacement distribution would become no more random, reverting to the

'binary’ phase distribution which results from minimal modal overlap.

This has important ramifications as regards far-field acoustic radiation. It suggests that rather than

exhibiting omni-directional behaviour. panels may be highly directional at specific frequencies. Any

omnidirectional properties must result from averaging across 1/3 octave (or critical) bandwidths, since

depending on plate damping properties the spatial distribution of velocity may change rapidly with

excitation frequency [2]. Figure 5 illustrates the modelled diredicnal behaviour of the panel in Figure

4 at a measurement distance of 10m. A large component of high frequency energy is radiated in the

plane of the panel, as is experienced in practice - however for angles more towards the normal. a

complex pattern of lobes exists due to interference effects between elemental radiators.

5. CONCLUSIONS

These results suggest that classil plate theory can enable the oonstmction of models which are

useful in interpreting the vibration and radiation behaviour of DML loudspeakers. It appears that

practical DMLs may incorporate reasonably substantial damping which results in high modal overlap.

This in turn corresponds to a vibration pattem dominated by the region of the plate close to an exclter.

from where circular wavefronts propagate across the plate surface. This muld be expected to result
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in directional behaviour,

which is mitigated by
changes in the detail of
directivity with frequency.
Thus when observed using
constant percentage rather
than narrow band analysis.
the devices may show a
broad directional
characteristic.
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Figure 5 - Modelled polar response (dB) ofradiation by clamped fibre-board

plate where f=5kHz and r=10m
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