
Proceedings of the Institute of Acoustics 

Vol. 30. Pt.2 2008 

AUTOMATED ACOUSTIC IDENTIFICATION OF VEHICLES  
 
 
 
N Evans Intelligent Systems Research Group, University of York, Heslington, York, UK 
D Chesmore Intelligent Systems Research Group, University of York, Heslington, York, UK 
 
 
 
 
 
 

 

1 INTRODUCTION 

A number of vehicle recognition researches have already been published. Although monitoring 
passing vehicles is important for areas including traffic control or road planning

1-3
 as well as in 

recent development of driver assistant systems,
4-6
 needless to say monitoring unauthorised 

intruding vehicles for security has become one of the most critical issues for society, governments 
and industries.

7-9
  

 
This paper describes a currently ongoing research aiming to develop a system to perform 
automated vehicle category identification, possibly in real-time, thus will be applicable to security 
purposes. The organisation of the rest of paper is: Section 2 explains a variety of sensors that have 
been employed in automated vehicle detection as well as the present approach, Section 3 
describes automated identification, of which the current focuses are on time domain signal 
processing techniques such as Time Domain Signal Coding (TDSC) and Co-Occurrence Matrix, 
then the primary results are presented and discussed in Section 4 followed by some conclusions 
and prospect for the near future studies. 

 
 

2 AUTOMATED VEHICLE DETECTION  

Sensors are categorised as active or passive, depending on whether they provide measurement 
outputs with an external circuit or not.

10
 The following are types of sensors that have been utilised in 

automated vehicle detection. 
 

2.1 Active Sensing and Passive Sensing 

In active sensing, radar
11,12

 and lasers
13
 have been applied mainly because of their capabilities of 

monitoring relatively wide ranges, as well as their lesser susceptibility to meteorological conditions, 
allowing detection through day and night, although generally the installation and maintenance costs 
can be high.

1
 On the other hand, inductive loops

14
 and magnetic sensors

15,16
 may be operated at 

lower costs, although their complexity and relatively poor accuracy due to noise sensitivity are 
drawbacks. 
 
The main advantages of using passive sensors in comparison to any active sensing technologies 
are that data collection activities can be carried out: firstly without interrupting the movements of the 
target objects hence potentially useful for traffic monitoring applications,

1,5
 secondly without 

betraying the existence of sensors and their implementations therefore would be suitable for military 
applications for example.

17
 Passive sensors in vehicle detection can be divided into two groups: 

techniques using image processing or acoustic signal processing. The former, such as video 
camera,

4,5,14
 satellite

3 
and thermal infrared technology,

18
 outperform the latter in stationary target 

detection
19
. Nevertheless they are more vulnerable to tall vegetation and terrain conditions than the 

latter. Moreover video cameras and satellite are less effective under dark or foggy situations.
1,11,13
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In addition to the advantages of passive sensors that have been mentioned above, acoustic and 
seismic sensors can be managed at relatively lower costs

1,17,20-22 
and distributed easily according to 

requirements of practical applications because of the flexibilities supported, for example, due to 
lower power consumption as well as the physically smaller and lighter devices that are available.

20,22
 

 

2.2 Acoustic Signature of Vehicles   

Acoustic signals of vehicles are mostly generated by engine, propulsion, exhaust system, vibration 
of the body and also friction noise between tyres and the ground surface.

23-30
 It was suggested that 

the dominant components of acoustic signals of a vehicle moving faster than 30 miles per hour 
(approximately 48 km per hour) are due to tyre friction noise.

31,32
 The major elements of moving 

vehicle signals are observed in the relatively lower frequency part of human perception range, e.g. 
up to a few kilo hertz.

1,21,26,33
 On the contrary, it is also claimed in some papers that often higher 

frequency components of the sound source, up to several kilo hertz, can be identified in spectrum 
analyses due to their higher harmonic components.

28
 It was suggested that dominant frequency 

components of seismic signals, generated by a moving vehicle, are below 500 Hz.
33
 

 

2.3 Current Approach   

A more accurate observation of unauthorised intruding vehicles can be achieved when utilising 
multiple methods together rather than relying on one type of sensor. Therefore sensor fusion is a 
desired near future goal for vehicle detection. Nevertheless development and/or operation of such 
systems would demand a huge amount of resources.  Consequently this research concentrates on 
acoustic and seismic vehicle detection.   
 
The data presented in this paper were obtained during a recording session at outskirts of York on a 
cloudy afternoon in January 2008: the temperature and maximum wind speed were measured at 10 
centigrade and 1.4 m/h respectively. The apparatus is listed below and Figure 1 shows its set up. 

• Two Rode NT5 condenser cardioid microphones (placed vertically to the road) 

• Two Sensor SM-4 vertical basic geophone units 

• Two AKG CK93 hyper cardioid microphones (placed in parallel to the road) 

• Edirol portable 4-channel recorder 

• Marantz Portable 2-channel recorder 
 

 
Figure 1: Recording Set Up (left) and System Structure Flow Chart (right) 

(Picture of a truck was obtained from Microsoft Office 2003 Clip Art.) 
 
 

3 AUTOMATED VEHICLE IDENTIFICATION  

As presented in Figure 2, an automated identification system consists of input signal pre-
processing, feature extraction and decision making stages,

1,34,35
 although there are variations in 

ways of modelling general recognition systems.
36
 First of all, data of the target source are collected 

by suitably placed sensors, and then fed into the system. Secondly unwanted signals in the 
collected data are removed at the pre-processing stage, while signals of interest may be boosted. 
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Next, the processed signals are treated further to separate selected features of signals that 
represent source characteristics well, so that discrimination of signals of different classes can be 
improved. Finally, a classifier identifies to which category the source of input signal should belong 
through decision making processes.  
 

 
Figure 2: General structure of an automated identification system 

 
3.1 Time Domain Feature Extraction 

The time domain approach is primarily the examination of signal shape, which can be observed by 
an oscilloscope for example. Behaviours of input signals are studied in terms of magnitude and the 
timing of amplitude variation. Now, commonly frequency components of acoustic signals generated 
by vehicles are dominant in reasonably narrow bands

37
 therefore features obtained in the frequency 

domain may not lead to a clear distinction of vehicle types. Furthermore, time domain signal 
processing tends to be less computationally expensive and/or capable of achieving faster 
processing speed than frequency domain or time-frequency domain signal processing. Hence time 
domain signal analyses may be more appropriate for high speed vehicle recognition. 
 

3.1.1 Time Domain Signal Coding (TDSC)   

Time Domain Signal Coding (TDSC) has been developed for diverse applications such as diagnosis 
of heart condition,

38
 machinery maintenance

39
 and animal species identifications.

40-45
 A standard 

TDSC is a time domain signal processing technique that focuses on waveform descriptors 
generated purely in the time domain: such as duration between two consecutive zero crossings and 
shape information, represented by the number of minima per segment.

40
 Since some potential in 

improving TDSC algorithms further has been recognised, research has continuously been carried 
out by testing variations of shape descriptors, constructing automated codebook generation 
algorithms

38,40 
and building algorithms that does not require a codebook.

43
 More on the current 

TDSC version is described in 4.1.2. 
     

3.1.2 Co-Occurrence Matrix 

In general, it is desirable to achieve efficient descriptions of relatively complex waveforms that 
maintain the majority of characteristics whilst data are reduced. The Co-Occurrence Matrix, which 
had been used actively in image processing, specifically in texture analysis,

45
 was first introduced to 

speech signal processing by Terzopoulos suggesting that the Co-Occurrence Matrix could be 
exploited to advance what had already been known as ‘voiced/unvoiced/silence classification and 
pitch detection’ in speech signal processing researches.

46,47
 Adaptation of Co-Occurrence Matrix to 

the present research is discussed in 4.2.2.  
 

3.2 Dimension Reduction and Identification 

It was realised that increasing the number of features to depict input data attributes beyond a 
certain point would actually lead poorer classification results: hence executing appropriate 
dimension reduction algorithms on extracted features before processing the final decision making 
algorithms could improve overall recognition performance.

36
 In general, converging acquired input 

signals (or features) according to pre-determined rules of assessing similarities and dissimilarities 
between each other is called clustering: whereas separating input signals one after another into pre-
defined finite groups is called classification. Typically clustering algorithms perform unsupervised 
learning: on the other hand both supervised and unsupervised learning can be seen in classification 
algorithms. For the actual real-time recognition system, as a finished product of the current 
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research, classification may be more appropriate although clustering techniques can certainly 
benefit verification of feature extraction algorithms for instance. 
 
 

4 RESULTS TO DATE 

4.1 Event Detection with Seismic Signals 

4.1.1 Pre-processing Seismic signals 

So far, most data processing has been performed with MATLAB R2007a. Seismic data, collected at 
a sampling frequency of 44.1k Hz and then normalised with Cool Edit Pro 2.0, were treated by a 
Blackman window FIR filtering function with the cut-off frequency set to meet the upper band limit of 
the geophone measurement, i.e. 180Hz. The filtered data were then decimated by a factor of 44 to 
make the new data sampling rate to be approximately 1k Hz. It is realised that acquiring seismic 
data at a much lower initial sampling rate would lead more efficient processing. 
 

4.1.2 A New Version of TDSC Feature Extraction 

Figure 3 shows features collected by the TDSC algorithm. Firstly input signals are segmented at 
each zero-crossing point so that each signal frame (named ‘epoch’) can be specified. Secondly the 
duration (D) and either the number of positive minima or negative maxima (S), depending on the 
polarity of the signal amplitude, are found about each epoch. Thirdly in the original TDSC, a 
codebook is generated with training data by manually studying the clustering behaviour of the 
above D and S combinations about each class, and then finally D and S combinations of the test 
data are categorised by using the codebook.  
 

 
Figure 3: Features Extracted by TDSC from Example Sample Set 

 
Nevertheless, the issues regarding the construction of a suitable codebook are concerning. Thus a 
proposed new algorithm, which is similar to using D-matrix

43
 but involving less computation, has 

been considered as a novel algorithm that may improve identification. The new procedures are 
explained below with a set of example samples, of which the waveform is indicated in Figure 3 and 
the values of collected features are listed in Table 1 and Table 2 . 
1. Samples of a certain length (a frame) are collected.  
2. Zero crossing points (border of each epoch) within the frame are found. 
3. About each epoch, D and S values are gathered (first and second row of Table 1). 
4. For each D-S pair per an epoch, Q=kS+D is calculated, where an appropriate k is found 

according to the maximum value of D. For this example, k=100 was used (third row of Table 1).  
5. The Q values are then sorted in ascending order to obtain Q’ (Table 2). 

 

D 30 30 7 12 6 11 30 11 7 14 7 8 13 5 

S 1 2 0 0 0 0 3 0 0 0 0 0 0 0 

Q 130 230 7 12 6 11 330 11 7 14 7 8 13 5 

Table 1: Sample values for TDSC (D, S, Q) 
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Q’ 5 6 7 7 7 8 1 1 12 13 14 130 230 330 

Table 2: Sample values for TDSC (Q’) 
 

4.1.3 Vehicle / Non Vehicle Classification with Seismic Signals 

By following the above procedures, 9 sets of vehicle samples and 11 sets of background noise 
samples, all over 7 seconds, were processed. The collected Q’ values were then plotted on a graph 
as in Figure 4 so as to examine their characteristics.  

 

 
Figure 4: Plotted Graph for Visual Comparison of Q’ Values. 

 
By visually inspecting the plotted graph in Figure 4, it can be realised that within a set of samples 
collected over the same length of time, longer durations (less number of zero crossings i.e. fewer 
epochs) and greater shape counts (more number of minima) are found in samples of vehicles 
comparing to that of background noise (i.e. non vehicle). It may be possible to discriminate sample 
sets between vehicle and non vehicle sounds by the obtained Q’ values. Then a simple method, a 
linear line drawn as shown in Figure 4, was adopted to obtain the classification results in Table 3. 
 

 Vehicle Class Non Vehicle Class 

Vehicle Samples 0.89 (8 out of 9) 0.11 (1 out of 9) 

Non Vehicle Samples 0.09 (1 out of 11) 0.91 (10 out of 11) 

Table 3: Classification Results by Visual Inspection 

 
4.2 Vehicle Category Identification with Acoustic Signals 

4.2.1 Pre-Processing of Acoustic Signals 

Normalised acoustic signals were firstly processed with a Hamming window FIR band pass filter 
with cut-off frequencies at 180 Hz and 18k Hz. Nonetheless, other noise cancellation methods 
should also be studied in order to improve speed and efficiency. 
 

4.2.2 Feature Extraction with Co-Occurrence Matrix Algorithms 

Sets of feature vectors were acquired by using the Co-Occurrence Matrix algorithms
47 
from acoustic 

signal samples corresponding to the 8 of the 9 seismic signals processed above. The Co-
Occurrence Matrix consists of a two-dimension matrix that embodies frequencies of occurrence of 
particular amplitude pairs at a ‘temporal lag’ k over a period of time, which is framed by the length M 
of window function W[n].  
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47
 

 
Some descriptors have revealed distinguishing attributes of acoustic signals generated by various 
types of vehicles: particularly the lorry was apparent when some parts of the features (0.6 seconds 
long) were plotted on graphs. Within those, Figure 5 shows ‘entropy’ and ‘variation’ descriptors, for 
which equations to calculate these values are shown in (4) and (5) below.    
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where ),( kSnijφ are cells of a co-occurrence matrix.
47
  

 
These findings and effects of variations in signal frame size, window length, lag k, and quantisation 
level will be continuously examined.  
 

 
Figure 5: Examples of Collected Descriptor, Entropy (left) and Variation (right)  

 
 

5 CONCLUSIONS AND FUTURE WORK 

Efficient high speed automated vehicle identification is required in a range of applications, for 
example surveillance and traffic monitoring. Hence development of such a system is the aim of 
ongoing research at University of York. Real data have been collected and analysed using diverse 
methods. Because their potential of providing low power, low cost, as well as less intensive 
computation: acoustic and seismic sensors combined with time domain signal processing 
techniques have been explored and the primary results have shown some positive outcomes. 
Nevertheless, the research project is investigating further to improve signal processing efficiency 
and accuracy. Moreover, carrying out some comparative studies into techniques in other signals 
processing domains might well be interesting. Additionally, the study of decision making algorithms 
should be the next milestone of the research.  
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