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ABSTRACT 

This paper deals with a non-contact transportation system using an ultrasound wave levitation 
phenomenon.  By driving a flexible beam at an ultrasonic frequency, the ultrasound wave is 
generated, which has a potential to produce a power to levitate and transport a target object.  
This paper begins by clarifying the levitation mechanism the ultrasound wave provides.  Active 
wave control is then introduced for oscillating the beam, thereby giving rise to the traveling wave, 
the amplitude and the phase of which may then be uniquely resolved.  The relevance between 
these variables under control and the transportation mechanism is investigated.  Because of a 
strong nonlinearity in the ultrasound field, the pressure distribution and the flow velocity need to 
be numerically analyzed.  It is shown that the transportation force is produced by imbalanced 
pressure amplitudes which slightly tilt the object with the result that the transportation force is 
generated.  It is also shown that the transportation force is under control, hence meticulous 
handling for a transportation system being viable.   

 
1 INTRODUCTION 

Comparing with the conventional levitation system using static electricity, gas ejection or 
magnetic force, an ultrasonic levitation method has the following benefits: (1) It does not attract 
dusts; (2) Any kind of material may be levitated; (3) Driving mechanism is simple. If the 
transferring function is added to the ultrasound levitation system, the levitation and transferring 
method may be applicable for industry such as semiconductor community. 

Basically two kinds of methods are conceivable for providing the transportation mechanism 
to the levitation system.  The first one is to transfer the levitation system per se by employing 
the additional conveyer equipment.  This method, however, entails the double mechanism for 
levitation and transfer, thereby causing complicity and cost, hence unviable.  The other method 
which is the subject of the paper is to make use of the travelling wave generated by a distributed 
structure. When a flexible beam is excited by ultrasound frequency such that travelling wave is 
generated, the ultrasound corresponding to the travelling wave is radiated.  By controlling the 
travelling wave using a certain control strategy, the ultrasound pressure levitates as well as 
transfers a target object.  

The travelling wave-based levitation and transferring method has been reported1-5 in the 
past, demonstrating experimentally the levitation and transportation of a target object.  
According to the proposal, a flexible beam at one end is excited to generate ultrasound while 
the other end of the beam is supported with some passive boundary to absorb the incoming 
travelling wave. Thus the mechanism based upon passive control may levitate as well as 
transport a target object, however, it lacks meticulous control for precisely transfer and position 
the object.  Furthermore, the levitation mechanism and the transportation mechanism have yet 
to be clarified.  

Taking into consideration the aforementioned points, this paper places its purpose on 
presenting an ultrasound levitation and transferring system bolstered by active wave control, 
and clarifying the levitation mechanism and transportation mechanism. This paper begins by 
clarifying the levitation mechanism the ultrasound wave provides.  Active wave control6 is then 
introduced for oscillating the beam, thereby giving rise to the traveling wave, the amplitude and 



the phase of which may then be uniquely resolved.  The relevance between these variables 
under control and the transportation mechanism is investigated.  Because of a strong 
nonlinearity in the ultrasound field, the pressure distribution and the flow velocity needs to be 
numerically analyzed.  It is shown that the transportation force is produced by imbalanced 
pressure amplitudes which slightly tilt the object with the result that the transportation force is 
generated.  It is also shown that the transportation force is under control, hence meticulous 
handling for a transportation system being viable.   

 
2. WAVE ANALYSIS OF A FLEXIBLE BEAM 

Consider a flexible sliding supported beam with active control force acting at both ends.  First it 
needs to deal with the beam without external forces. The equation of motion of a flexible beam 
is then given by  
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where w , E , I ,   and A  are flexural displacement, Young’s modulus, second moment of 
inertia, density and the cross section area of a beam.  Furthermore, the flexural deflection of a 
beam is written as 

j tw( x,t ) w( x )e      (2) 
Equation 1 is then given by 
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Then the solution to Eq. 1 yields 

1 2 3 4
jkx kx jkx kxw( x ) c e c e c e c e        (5) 

Differentiating the deflection of the beam with respect to x produces the slope x , bending 
moment xm  and sheer force xf . Integrating these variables into a vector, we have 
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The state vector may further be expressed as 
( x ) ( x )z B c  (7) 
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The matrix B moreover expands to 

2 2 2 2

3 3 3 3

1 1 1 1 0 0 0

0 0 0

0 0 0

0 0 0

jkx

kx

jkx

kx

e

jk k jk k e
( x )

k k k k e

jk k jk k e





  
      
   
      

B  

( x ) KD   (10) 

For brevity, setting 00( ) z z , x( x ) z z so that  
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Using Eq.11, Eq.12 becomes 
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where the transfer matrix T is defined as 
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Once the initial state vector is obtained, the state vector at any position may then be 
determined.  Furthermore, taking into consideration the boundary condition; sliding support, the 
initial state vector is written as 
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where 1f  is the control force acting at the left end of the beam.  Next, it needs to obtain the 

initial displacement 0w and bending moment 0m / EI . From Eq.13, the state vector at l is given by 

0l ( l )z T z     (17) 

Therefore, the initial state vector 0z  is obtained as 
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where cf  is the control force acting at the right end of the beam.   
Using the wave number matrix K , the state vector may be transformed to the wave vector 
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The wave vector is written as 
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where 1w  and 3w  are forward wave and backward wave, while 2w  and 4w  are near field waves 

at ｘ＝0，ｘ＝ｌ, respectively.   
 



Define the control forces 1f  and cf  as 
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In the numerical analysis, the excitation frequency and the amplitude A are set to 20 kHz and 60 
N, respectively while the phase difference φ is varied.   

Figures 1 and 2 show the envelope of the beam deflection driven under the condition, φ = 0° 
and φ = 90°, respectively.  Apparently, as a result of changing the phase difference φ, the 
waveform of the progressive wave varies.  At φ = 0°. The standing wave is dominant over the 
whole region of the beam.  When the phase difference is assigned on the control force, the 
progressive wave emerges and finally becomes dominant at φ = 105°.  When the negative 
phase difference is given, the backward wave is then produced albeit the waveform is the same 
as that with the positive phase difference.  At φ = 0° and φ = 180°, the standing wave is 
generated and hence dominant over the beam so that even if the phase difference is varied the 
prominent progressive wave is not generated.  

Figure 3 shows the plots of the maximum deflection around the center of the beam where 
influence of the near-field is little versus the phase difference.  Comparing with Fig.4 depicting 
the standing wave ratio 1 3w / w  at each phase difference, it is worth investigating the relation 
between the progressive wave and the phase difference.  When the backward wave becomes 
dominant over the whole region of the beam; that is 1 0w  , the standing wave ratio 1 3/w w  is 0 

whereas when the progressive wave becomes dominant; 3 0w  , the standing wave ratio 1 3/w w  
becomes  .  When the forward wave and backward wave are completely balanced; 1 3w w , the 
standing wave ratio becomes 1.  
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Figure 1  Envelope of the beam at 20 kHz               Figure 2 Envelope of the beam at 20 kHz 
                               (0 degree)                                                           (90 degrees) 
 

       
 
Figure 3 Amplitude of each phase difference         Figure 4 Standing wave ratio of each phase 

at 20 kHz                                                                 difference at 20 kHz 



 
Clearly from Fig.2, when the beam is excited by two control forces in phase or out of phase, 

the standing wave emerges. Note that the standing wave ratio in this case is 1; however, there 
exists 30% in difference between the two standing wave amplitudes. As the phase difference   
increases from 0°, the standing wave ratio decreases while the backward wave contribution 
augments.  As a result, the maximum amplitude of the beam lessens.  If this is the case, 
backward wave and forward wave coexist in the same region of the beam, with the result that 
the envelope becomes not smooth but rough. At   = 105°, the standing wave ratio becomes 0 
and the maximum displacement amplitude at the center of the beam becomes minimum. 

In this case, backward wave thoroughly dominates and the standing wave disappears. 
Moreover, the envelope of the beam deflection becomes smooth. Note that   providing the 

standing wave ratio being 0 varies when the driving frequency changes.  When the phase   
further increases, the standing wave ratio also increases.  What it means is that the ratio of the 
forward wave to the backward wave increase, and hence the predominance of the backward 
wave over the forward wave continues till the phase becomes 180°.  At 180   , the standing 
wave ratio becomes 1 and the standing wave ratio again hits 1 and hence standing wave 
soundly governs the beam.  Thus, the phase   is explicitly related to the progressive wave so 
that active wave control in terms of the phase leads to the control of progressive wave.   

In summary, the backward emerges when   is between 0° and 105°, whereas the forward 

wave appears when   is between 0° and - 105°.  The maximum amplitude of the beam 
deflection at the center of the beam is determined as contribution rate of the standing wave and 
the progressive wave. 

 
3. NUMERICAL ANALYSIS OF ULTRASOUND FIELD 

A. Ultrasonic field model  
Now that the progressive wave is controlled via active wave control, it is worth considering the 
relation between active wave control and ultrasonic levitation force.  To do this, it needs to 
establish a model for analyzing the sound pressure radiated from a flexural wave of the beam.  
In overviewing the ultrasonic analysis, there are basically two approaches. First is the nonlinear 
acoustic approach11,12 from the viewpoint of Langevin radiation pressure or Rayleigh radiation 
pressure, and the other via fluid dynamics7-10 in terms of cylindrical squeeze film.  

According to the squeeze film theory, the following items are clarified; (1) the temporal 
average of the sound pressure inside the squeeze film is larger than that of atmospheric 
pressure, (2) squeeze film forming depends upon the squeeze number determined by fluid 
viscosity and excitation frequency, and (3) the squeeze film shape is independent of the 
amplitude of an exciting surface. 

Taking into consideration the facts observed in the preceding experiment, i.e., (1) the 
levitation gap is less than 1 mm, (2) it needs to consider the viscosity because of the transfer of 
an object, and (3) a squeeze film forming is not dependent on the amplitude of the exciting 
surface, this paper deals with the fluid dynamical approach. 

The governing equation of an ultrasonic sound field is then given by the following Navier 
Stokes equation and the continuous equation, 
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where v , p,  ,  ,  and   are fluid velocity, pressure, density, viscosity of the fluid, gradiant 
and the Laplacian.  Regarding the boundary condition of the beam at both ends, the state 
variables of the beam in Eq.25 are assigned.  
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where 1ap  and 2ap  are the pressures before and after control, and   is the velocity potential.  
As with the particle velocity normal to the beam, the surface velocity of the beam is utilized.  
Another important point on the boundary condition is the treatment of a progressive wave. It is 
true that the wave propagates as a flexural wave along the beam so that it is likely to introduce 
the horizontal velocity component of the beam.  However, every tiny element continuously 
connected moves vertically and hence the horizontal movement of the element is null.  In the 
numerical analysis, the vertical velocity of the beam is matched with the fluid velocity at the very 
contact point, which is introduced as the extraneous force of incompressible Navier-Stokes 
equation. 
 
B.  Analytical results 
Using a model shown in Fig.5, both Eqs. 23 and 24 are numerically analyzed via a HSMAC 
method, computational fluid dynamics algorithm. To do this, solving procedure continues until 
the error in the continuous equation becomes less than 0.001.  Taking into consideration the 
sound wavelength of 48.4 mm at 20 kHz, the object length is set at 72.6 mm, 1.5 times the 
wavelength. 
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Figure 5 Numerical calculation model 
 

Figure 6 shows the temporally averaged pressure distribution in the fluid field with the 
atmospheric pressure being set at 0.  It is seen that the pressure beneath the object is larger 
than that above the object, hence levitation pressure confirmed. Illustrated in Fig. 7 is the 
temporal average of fluid velocity below the levitated object expressed as vectors.  Comparing 
with the pressure in the vertical direction, the pressure induced by the flexural bending wave is 
noticeable.  Note that the fluid in the vicinity of the object moves in the same direction with that 
of the vibrating beam, however the directions become opposite where the observation location 
is far from the beam and maximum near the levitated object.  

Figures 8 and 9 illustrates the time averaged pressure under the object, depicted with the 
phase difference   varying. Note that the pressure in Fig. 8 is governed by the forward wave 
while the pressure in Fig.9 dominated by backward wave. In both cases, the pressure 
amplitudes at two bumps differ due to the phase difference  , thereby generating the pressure 



gradient.      
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Figure 6 Time averaged pressure distribution       Figure 7 Time averaged velocity around the 
             around the levitated object at 90 deg.                     the levitated object at 90 deg. 
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Figure 8 Time averaged pressure under the        Figure 9 Time averaged pressure under the 
               levitaged object.                                                   levitated object 
 
 
Consider the transferring force acting on the levitated object.  For this purpose, the following 

three items needs to be discussed. 
(a) Force acting on both sides of the levitated object 
(b) Force due to the fluid viscosity acting around the levitated object 
(c) Force contributing to the transfer due to the tilting of the levitated object 

Regarding the force acting on both sides of the object, the transferring force due to the pressure 
difference and the effective area may be given by 

, , ( )p p right p left right left pF F F P P A     (26) 

Consider the viscous stress acting on the object due to the velocity gradient beneath the object 
is written as 

du
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Therefore, the transferring force due to the fluid viscosity acting on the undersurface of the 
object is given by 
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To calculate the force in the above, the finite difference method is introduced  
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Consider the transferring force due to the tilting of the levitated object.  Table 1 presents the list 
of three forces contributing to the transferring force, the direction of which toward the rightward 
is defined as positive. Furthermore, the transferring force induced by the tilting of the object is 
shown for the two cases; maximum gradient angle is 1° and 0. 1°. Apparently from the table, of 
three forces the force due to the tilting of the object is the largest, followed by the force due to 
the pressure difference on both sides of the object and then the force due to the fluid viscosity. 
Note that three forces varies in correspond to the phase difference  .   In the case of  =90°, 
the ratio of the force amplitude in terms of (b):(a):(c) is 1:264:2900(0.1°) or 29000(1°).  In this 
case the transferring force directs to rightward albeit the progressive wave on the beam travels 
leftward so that the direction of the movement of the levitated object and the travelling wave is 
opposite.  The transferring force increases in proportion to the phase difference, and when the 
phase inverses the transferring force also inverses.   
 

Table 1  Comparison of transportation forces 

90 60 30 0 -30 -60 -90

(1) (0.6) (0.3) (0) (-0.3) (-0.6) (-1)

(0.1) (0.06) (0.03) (0) (-0.03) (-0.06) (-0.1)

-1.35E-08 -2.70E-08 -4.50E-08
levitated force

-1.35E-07 -2.70E-07 -4.50E-07
levitated force

Angle[°]
Component of

4.50E-08 2.70E-08 1.35E-08 0

Angle[°]
Component of

4.50E-07 2.70E-07 1.35E-07 0

-1.58E-11

Pressure
3.07E-09 2.48E-09 1.22E-09 -4.37E-10 -2.03E-09 -3.11E-09 -3.44E-09

difference

Transportation Phase difference [θ]
force [N]

Viscous force 1.55E-11 1.22E-11 6.48E-12 -1.68E-13 -6.82E-12 -1.24E-11

 
 

4. CONCLUSION 
For the purpose of clarifying the transferring mechanism of a levitated object via ultrasonic 

sound, the theoretical analysis and numerical analysis were conducted.  The issues presented 
are summarized in the following. 
(1) Relation between the phase difference, a control parameter of active wave control, and the 
progressive wave generated along the beam is clarified.  
(2) Relation between progressive wave and the associated transferring force is elucidated.  
Furthermore, three factors contributing to the transferring force; viscous force, pressure 
difference acting on both sides of the object and pressure gradient caused by flexural wave are 
discussed.  As a result, the contribution rate of the pressure gradient to generating the 
transferring force is found to be conspicuously high. 
(3) Progressive wave produced by active wave control generates the pressure gradient between 
the levitated object and the travelling wave along the beam, thereby slightly tilting the object and 
thus providing the transferring force. 
(4) It is found that the travelling direction of the progressive wave and the moving direction of 
the object is opposite. 
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