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1 INTRODUCTION

Data acquired by SAR systems are directly related to the physical properties of the natural media.
However, the presence of speckle, which is usually modelled as a multiplicative noise, is an
obstacle for the image interpretation and understanding. Generally, on intensity images, an area is
characterized by its mean reflectivity, which is computed by spatially averaging pixels. This statistic
represents well homogeneous areas, but is now well established that a large amount of information
can also be retrieved by studying the spatial fluctuation of the mean reflectivity within an area. This
type of fluctuation is usually referred as the texture of the scene and is generally characterized by
the two-point statistics, i.e. the auto-covariance, the auto-correlation function (ACF) and power
spectrum density (PSD). Extensive studies based on two-point statistics of SAR images have been
pursued in the past and generally, stationary isotropic models are considered. It has been
previously shown':2 that a nonstationary anisotropic model called Anisotropic Gaussian Kernel
(AGK), designed for the local auto-covariance analysis of texture, allowed a more accurate
description of the image.

In this paper, we present two methods for the estimation of the AGK parameters. The first algorithm
is based on the direct computation of the ACF, and is an improvement of the method developped
in'. Such a manipulation is computationally expensive since. the entire ACF has to be computed for
each location of the image. In a second step, we present an alternative. description of the image in
terms of local orientation, based on an operator called Gradient Structure Tensor (GST)® which is
widely used in computer vision. We also establish the mathematical relation between the
parameters of our model and the GST, in a first step for a noise-free texture, then for a speckled
texture. This relation is highly non-linear, thus we propose a scale approximation that permits our
approach to be conveniently applled on real SAR data. Finally, both- methods are validated and
compared on SAR data.

2 THE ANISOTROPIC GAUSSIAN KERNEL MODEL

In the context of texture analysis only single-look data have been regarded, since spatial averaging
tends to damage texture information. It is now well established that speckled intensity is well
described by a multiplicative model, thus we adopt the following decomposition4, maintaining that at
2-D spatial location x = [z,y[”, the intensity / can be written in the following form:

| I(x) = pr(x)T(x)F(x) (1)
 where y; is the local mean of terrain reflectivity, F is an uncorrelated random process modelling the

speckle, with unitary mean uy = 1 and variance o% = 1 in the case of single-look data. The term T .

contains the information of interest about the texture of the scene and is modelled by a spat|ally
correlated random field of unitary mean up =1. .

‘As multiple forms can be taken by autocorrelation and PSD, a simple parametric model is
chosen for these descriptors, in order to generalize the notion of correlation length and frequency
spread to the 2-D case. It has been shown in previous publications'? that a well adapted modei for
this task is the anisotropic gaussian kernel (AGK) model, that assumes a locally stationary
autocovariance with the form: : :
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Cr(d) = opezp(—dTE74d) : )
where d is the 2-D spatial lag and Zr ‘is the covariance matrix of the spatial coordinates x and y.
- This matrix can be decomposed in the form £, = RZAR, where
' 2o
0 2

3)

is the covariance matrix expressed in its eigenvectors basis [u,v]” . The values [, and [, are the
principal and secondary correlation lengths in the directions given by the eigenvectors and

cosf —sinf

sin@® cos#

(4)

is an unitary rotation with angle 6 determining the dominant orientation of the texture. As the Fourier
transform of a Gaussian function remains Gaussian and leaves rotatlons unchanged, the 2-D PSD
has a very similar expression:

Sr(f) = o |Sp[/? exp (—m*"Srf ) + ppé(f) (5)
where { = [ft,fy]T is the 2-D spatial frequency vector, the operator .1 is the determinant and 6(f)
is the Dirac delta dlstrlbutlon

3 PARAMETER ESTIMATION

31 Direct estimation

Previously, a parameter estimation procedure based on the direct computation of the local sample
autocovariance was proposed’. Here, we present an enhanced algorithm based on the original one,
where a new correction-step for the estimated correlations lengths is introduced.

3.11 Local autocovariance estimation '

The most straightforward method to estimate the parameters of our model is based on the explicit
computation of the local autocovariance on a N x N sliding window. As the autocovariance is
assumed locally stationary, it is estimated by the well-known ergodic estimator of sample
autocovariance for the discrete 2-D lag [p,q]T

Gr(pq) = N2 Z L (G, §) = pr) TG+ p,d + @) — ) (6)

i=1 j=

where fi; is the sample mean.

The autocovariance Crp of texture is not directly available due to the model (1). As T and F are
assumed to be statistically independent, the autocorrelations of T and / are linked by the relation:

| Ry(p,q) = piRr(p,0)Rr(p,q). » ul
‘The autocorrelation Rp is determined under the hypothesis of spatially uncorrelated speckle:
Rp(p,q) = 036(p,q) + pif, (8)

where §(p,q) is the discrete Kronecker delta. Then, |t can be easny shown that the relation
between the autocovariances C; and Cr is:

CI(p7 ) - MI[ (paQ)(UT + 1) +. OT(pa )] ’ (9)

Vol. 28. Pt.5. 2006




Proceedings of the Institute of Acoustics

It can be observed that the speckle contribution affects only the (0,0) coefficient of C;. Moreover,-
as o2 .= Cp(0,0), the simple following speckle correction on has to be applied to retrieve Cr from -

Cr:
(C1(0,0)/p) —1

: (10)

Cr(0,0) =

3.1.2 Parameter estimation by geometrical moments

_ The previously introduced correction permits to retrieve texture statistics which are here described
by the AGK model (2). To estimate the spatial parameters I,, /, and 0, the shape of the measured
autocovariance Cr -is analysed by means of the geometrical moments5 where the expression of
the raw moments is :

P,oq
f(z er 2Y Cr(z,y)dzdy

Mpg = 7 o (1)

j;ﬂ e C‘T(éf,y)dwdy
and the central moments are expressed by '
L?»WERZ (z — myp)? (y mm) CTgx,y)dwdy

j;m,y)el??' T( a'y)

where integrals can be replaced by discrete sums for computation on the image. Based on these
moments, the following dispersion matrix can be defined:
‘Moo M

1 oo
The eigenvalues ) and ), of V correspond to the spatial variances of the AGK autocovanance

ie. N —l2/2 and )\ =i2/2 and the orientation angle 6 is given by the elgenvector
k; = [ky k1 ;)" corresponding to the largest eigenvalue ), since:

Hpg = (12)

(13)

by, : o o
6 = arctan[ku} | , (14)

34.3  Thresholding of the autocovariance

From a theoretical point of view, the autocovariance Cr should only be affected at coefficient
(0,0). In practice, the estimate is performed locally on a restricted number of samples, which
provokes uncertainties on each coefficient of Cr . These perturbations may have strong effects on
the estimation of the geometrical moments. Therefore, a thresholding at e”! of the sample
autocovariance Cr is performed in order to stabilize the estimation and only the central lobe is
“used for the estimation of the geometrical moments. The estimated parameters are then a fractlon
- of the real parameters, which can be evaluated by resolving the mtegrals
122

I‘ZO(l‘uvlv) = f%+g;;51 T exp —(73_ + E)

dzdy,

(15)

932 2

12 y ) dzdy -

IOO(lual'u) = f£+!/2<1 ewp{ (

ZVES

. and the symetrical I, for the y direction moment. Based on these integrals, the relation between

‘the estimated fraction 7, and the real values [, are: _
i Lo (luy ) (1— 2] .
l“ =uT 7N " lu T
IOO‘(lualv)_ 2(1 - 6_1) } (16)
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and the same relation stands for 7, and ,.
3.2 Gradient Structure Tensor based estimation

As previously explained, the above algorithm is computationally expensive. We expose here a
second approach of texture estimation based on the GST operator.

3.21 The Gradient Str‘uctur_e Tensor operator .

The GST is a well-know operétor in the field of computer vision and is defined in®. Here we adopt a
- different formulation of this operator, that aI|Qws the analysis of random fields : ‘

J = B[VIVIT] ' (47
where VI = [8[/333,‘31/5‘3/]T is the 2-D gradient of the intensity. By construction, J is a 2x2 real

symmetric matrix with diagonal terms Jy;, Jy and off-diagonal terms Ji, = Jy;. By applying the
power conservation theorem® the GST may be rewritten in the spectral domain as :

J = 4n fR2 #75; (£)df (18)

where S; is the PSD of the intensity. Thus, we have shown that the structure tensor is proportional
to the second order moment matrix of the PSD and is directly related to second-order statistics of
_the data. :

3.2.2 Noise-free texture
In a first step, we consider the case of a noise-free texture, which corresponds to /=T. If the local

autocovariances of the texture follows the AGK model given by (2). Inserting the PSD (5) into the
equation (18) leads to the relation : ' S

| 1= 20kt | (19)
Therefore, eigenvalues ) and ), of the tensor are related to the correlation lengths I, and I, by :
202 208 :
N = 73‘)\2 = , (20)

~ where o4 can be estimated by sample variance. Besides, it can be shown? that the angle 6 is given
by the relation : ' .

. 'J]_]_ —ngl . ) (21) )

~ Thus, -for such a texture, parameters can be estimated without the explicit computation of the

autocovariance or PSD.

1
"0 = —arct
; 2arcan

3.2.3 Multiplicative model

In the case of SAR intensity, texture is affected by speckle and described by the multiplicative- '
model (1). Such a process is not differentiable and has to be smoothed before the estimation of
gradient. The GST is thus computed on the image I, = K, * I where K, is an isotropic gaussian
kernel. The GST of the pre-smoothed image is then:

J=E[VIVII]. @

The power density spectrum of the pre-smoothed intensity is then given by the relation: .
Sp, = 81(f) | K,(f) P ‘ (23)
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‘where K, (f) = ezp(—2n20%Tf) is the 2-D frequency response of the isotropic gaussian pre-
smoothing filter. -

‘By computing the rntegral (18) for the PSD (23) and consrdermg that, for the product model, the
expression (7) leads to

S1(8) = 13 (Sp * Sp)(0), | (24)

where the symbol * denotes the spatial convolution operator, it is thus possible to obtain the
expression of J as a function of the anisotropic gaussran kernel model parameters lu,lﬂ,e and the
scale parameter c:

J =
K 2+ 40%) (2 + 407) 810

with &g = Sy + 40212 where I, is the 2x2 |dent|ty matrix.

At this point, it may be observed that, due to the presence of speckle and the effect of pre-
smoothing, the relation between the structure tensor and the model parameters is highly nonlinear.
Thus, since the solution of such an equation has no close analytic form, numerical optimization is
necessary to obtain the correlation lengths I, and {, from the structure tensor. Moreover, the
observation of the GST eigenvalues as a function of these parameters as displayed on figure 1
~ permits to notice that the solution is not umque '

1313 1402 ‘

Flgure 1 Ergenvalues of the structure tensor as a functron of the parameters 1, and [, fora
speckled texture with pre-smoothing 6=1.2.

3 24 Scale apprommatmn

To apply the GST estimation method on real data, we make the approxrmatlon that the spatial
information of texture at scale ois included in the smoothed signal I, , which is considered as a
noise- free signal for a sufficient amount of smoothing (i.e. T' = I,). The GST and the local variance
o} = oz are then computed on the filtered image on a NxN square window and the parameters [, ,
I,, 0 at scale o of the AGK model may then be estimated using the previously established relations
(20) and (21). :

4 VALIDATION ON SAR DATA

The two presented approaches have been validated and compared on the SAR intensity channel
Iyy =| Sgg P, for a subarea extracted from the L-band Trauntstein dataset that was acquired by
the ESAR sensor from the DLR (German Aerospace Center). The results are displayed on figures 2
and 3. The two methods have been applied with a 31x31 sliding window. The smoothing parameter
for the GST method is c=8. For a better visulisation of the results, the kernels are displayed for
sampled positions with a step of 15 pixels. Moreover, for display purposes, four ranges of pixels
have been determined by thresholding the coefficient of variation CV; = o; / ;. First, the median
value of the coefficient of variation-has been calculated, giving two ranges, containing each 50% of
the points of the image. Then, another computation of the median on these two subsets permits to
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distinguish four ranges of coefficients of variation in the image, which are related to the power of T,
the texture process. The ranges 1 and 2 (top row of figures 2 and 3) stand for the less
heterogenous zones of the image, as the ranges 3 and 4 (bottom row of figures 2 and 3) stand for
strongly textured areas. This representation permits us to observe the fact that spatial correlation
can occur even for zones that are not stronlgy textured, although the most anisotropic behaviours
are measured for ranges 3 and 4, i.e. zones whith strong variability. Since random heterogeneities
may be responsible for the measurement of strong anisotropy (as it can be observed for the
forested area), our method is also detecting deterministic structures like edges as they provoke
steep changes in the structure of the signal. From a quantitative point of view, the first method gives
an estimate of the underlying texture correlation lengths, whereas the second one provides only the
values at scale o for the filtered speckle/texture ensemble. Moreover, the filtering process used in
the second method introduces correlation in the signal. This explains the differences of estimates
between the two approaches. In particular, for ranges 1 and 2, one can observe more dissimilarities
between the two methods due to the influence of this pre-smoothing in the GST-based method.

Figure 2: Estimated kernels with the direct estimation method. The kernels are di‘splayed with a
scale of 1. Top left: range 1. Top right: range 2. Bottom left: range 3. Bottom right: range 4.
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Figure 3: Estimated kernels with the GST based estimation method. The kernels are displayed wnth
a scale of 0.05. Top left: range 1. Top right: range 2. Bottom left: range 3. Bottom rlght range 4.

5 CONCLUSION

In this paper, two methods for the analysis of nonstationary spatial texture from SAR data have
been introduced. Both are based on an original parametric model named AGK for the local
autocovariance of texture intensity. The first method extracts parameters from direct estimation of
the autocovariance whereas the second one is based on the Gradient Structure Tensor (GST). This
operator has been adapted to stochastic processes and the relation with the parameters of the AGK
model has been established. In the case of a speckled process, a pre-smoothing operation is
necessary, leading to a nonlinear equation with no simple analytic solution. Therefore, a scale
approximation is formulated in order to apply the method to experimental SAR data. These two
approaches are then validated and compared on experimental data. They both provide a compact
representation of the spatial information of the image which could be used for applications as for
instance speckle filtering®, detection of linear structures or texture classification. Moreover, for a
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more complete representation of the data, the GST method could be improved by cohsidering

multiscale analysis approaches.
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