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1 INTRODUCTION 

Change Detection (CD) is a processing technique which extracts objects or features of interest as 
differences between two images of the same scene. It is widely used in a variety of domains with 
diverse sensor types. Mine hunting is an important naval application of CD. Reference sonar 
imagery of strategic ports, inlets or sea lines of communication is recorded during route surveys, 
when the seafloor is assumed to be free of mines. After a new survey, mines are recognized as 
objects that are only present in the current imagery. CD can be the only feasible option when the 
seafloor clutter density is high, or when the mine’s physical characteristics are unknown, as for 
improvised explosive devices (IED). Other underwater applications include seabed infrastructure 
inspection, environmental monitoring, Intelligence, Surveillance and Reconnaissance (ISR) and 
marine science. Due to the high costs of large area seafloor surveys, typical time intervals may be 
in the order of one year or more. 
 
As manual analysis of large image sets is tedious and prone to error, there is a need for Automated 
Change Detection (ACD) systems that can compare imagery and reliably report the relevant 
changes. ACD approaches can be broadly categorized based on the data level used for temporal 
matching: decision level methods apply a trained or modelled recognition algorithm on each data 
set and compare the results, while image level methods compare the data sets directly, either for 
regions or individual pixels. For coherent sensors, image-level ACD can be further categorized as 
coherent (utilizing both pixel phase and magnitude) or incoherent (magnitude only). Coherent 
processing is more sensitive than incoherent to minute scene changes, but imposes stricter 
operational requirements.  
 
ACD for mine hunting was originally focused on decision level methods based on geographical 
association of contacts (detected mine-like objects) across the data sets 1,2. This was due to 
shortfalls of traditional side-scan sonar (SSS) imagery, e.g. poor and range-dependent along-track 
resolution, as well as challenges imposed by the underwater environment regarding data 
positioning, platform trajectory control and signal propagation. The introduction of Autonomous 
Underwater Vehicles (AUV) equipped with high-grade Aided Inertial Navigation Systems (AINS) and 
Synthetic Aperture Sonar (SAS) has partly remedied these deficiencies and facilitated development 
of image level sonar ACD 3-7. These works have focused on smaller, selected seabed scenes, 
where a pair of corresponding images has been produced through synchronized SAS processing of 
old and new data. The technical contribution of this paper is to demonstrate ACD for a full survey in 
a varied ocean environment, using input images created through independent SAS processing of 
the two data sets. This constitutes an important development step towards an efficient and 
operational system, which is the aim of FFI’s work.  
 

2 SAS CHANGE DETECTION PROCESSING 

2.1 Coherent and incoherent processing 

Coherent ACD performs complex cross-correlation for small, co-registered image windows and 
detects changes as locations with reduced coherence (data similarity). The method is sensitive to 
the distribution of individual sonar scatterers within a resolution cell and can detect even subtle 
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changes that are invisible in the magnitude SAS image. This also makes it vulnerable to temporal 
decorrelation of the scene background, as only minute perturbations caused by e.g. currents or 
marine life are sufficient to reduce the repeat pass coherence. The feasible interval for coherent 
repeat pass processing of high-frequency SAS data depends on the ocean environment, but has 
been estimated to maximum a few days 8. Additionally, the method requires data co-registration 
accuracy within one-tenth of the pixel size and small sensor trajectory offsets to avoid decorrelation 
due to sensing geometry differences. Finally, high repeat pass coherence can only be achieved 
when the single pass coherence is high in both input images. Reduced coherence in regions with 
multipath pollution and low reverberation (e.g. sonar shadows) can then be mistaken for changes, 
unless specifically addressed by e.g. masked coherence 9.  
 
Contrary, incoherent ACD can only detect changes in sonar image magnitude, but has significantly 
more relaxed requirements. Most importantly, survey intervals can be considerably longer. Intervals 
in the order of years have been demonstrated 10, which comply with operational demands for most 
applications. The needed co-registration accuracy is around the size of a pixel. The method is also 
more tolerant to sensor trajectory offsets and image degradation. The ability to produce a change 
image revealing the magnitude differences between the two co-registered input images is another 
advantage of incoherent ACD. Analysis of this difference image is usually intuitive, as new objects 
have similar contrast and shape as in the repeat-pass image, while removed objects have inverted 
contrast compared to the reference image. This simplifies detection of only specific types of change. 
 
As FFI aims to develop a naval mine hunting ACD system, robustness under realistic operating 
conditions is essential. This study is thus applies incoherent processing. 
 

2.2 Streaming SAS data 

Strip-map SAS processing can operate in either streaming or spot mode 11. Streaming mode 
produces a continuous, full-range swath of slightly overlapping images and is the preferred mode to 
generate imagery of a full SAS survey, commonly applying fast wavenumber domain algorithms to 
reduce processing time. Spot mode is used to generate superior quality images of selected, smaller 
scenes, applying more processing intensive algorithms like time-domain backprojection. Previous 
studies on SAS ACD have typically applied spot generated reference and repeat pass image pairs 
of the same seafloor regions, based on vehicle navigation data. For an operational ACD system, 
use of the standard SAS survey products yields benefits such as reduced data storage demands 
and processing time. However, the resulting unsynchronized image blocking introduces another 
processing challenge as each repeat pass image partly overlaps several reference images (Figure 
1). Streaming images from the HISAS 1030 sonar are projected in slant-range and stored in the 
XTF file format. Succeeding images with approximately similar orientations are concatenated into a 
single file after overlap removal. Image-wise ACD processing is necessary as image resolution and 
motion compensated heading vary slightly between image blocks.  
 

 
Figure 1:   The HISAS streaming data files contain multiple, adjacent SAS images. There is a few 
meters image overlap between succeeding files, but no overlap within a file. Each repeat-pass 
image corresponds to parts of several reference images, which must be sequentially retrieved for 
ACD processing, as co-registration parameters must be determined separately for each image pair, 
due to (minute) grid coordinate variations between neighbour images. Margins are added when 
extracting reference imagery, to account for relative navigation errors. 
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2.3 Processing chain 

Figure 2 shows the data processing chain used in this study. For each repeat pass image, 
corresponding reference imagery is sequentially retrieved based on vehicle navigation data (Figure 
1) and accurately aligned with the repeat pass image to build a change image mosaic. The pre-
processing starts with a logarithmic transform of magnitude to emphasize sonar highlights and 
shadows more equally. Expected spatial and temporal decorrelation under typical operating 
conditions will cause image speckle for the two passes to differ. Anisotropic diffusion12 filtering to 
reduce speckle while preserving edges, improves the data-driven co-registration and lowers the 
“noise floor” in the change image. The images are also resampled from slant-range to ground-range 
coordinates using high-resolution bathymetry from interferometric sonar data processing. 
 
The fine-scale image co-registration is based on feature point matching. Previous SAS ACD 
studies4,7 have used the U-SURF13 or SIFT14 algorithms to extract and describe feature points in the 
images. Based on evaluation of state-of-the-art algorithms on varied SAS CD data, however, this 
work applies the faster CenSurE/STAR 15 detector and BRIEF 16 descriptor. As an example, Table 2 
lists feature point results for the two scenes in Figure 5 using four different methods. Point pairs are 
robustly matched based on description similarity and model fit, and used to estimate the parameters 
for an affine transformation of the reference image onto the pixel coordinates of the repeat pass 
image. Pixel-wise subtraction of magnitude values then produces the change image section 
corresponding to the reference image’s overlap with the repeat pass image. All retrieved reference 
images are processed like this, before proceeding with the next repeat pass image, etc. 
 

   
 
Figure 2:   Processing chain for incoherent, image-level ACD on streaming SAS data. 
 
For several ACD applications including naval mine hunting, the changes of interest are new objects 
that are only present in the repeat pass images. However, change images typically reveal a variety 
of other differences caused by sensing geometry variations, image degradation, data co-registration 
errors and irrelevant temporal changes due to marine life, currents, waves, human activities, etc. 
Simple change image thresholding will then not suffice. To detect the objects of interest without a 
significant number of false alarms, the processing needs to take the specific characteristics of the 
target changes into account. The matched filter17 has proven to be a simple, yet effective and 
versatile detector for mines in sonar images. The filter mask consists of two parts, corresponding to 
a generic mine highlight region with a trailing shadow region. The length of the shadow region 
reflects the expected target height and thus increases with range. The mask is convolved with the 
full change image. In this work, the filter output at each pixel location is the ratio of the average 
values within the highlight and shadow regions, respectively. The filter is sensitive to proud, mine-
sized objects on the seafloor, while suppressing other responses in the image. A classifier assigns 
a confidence value to each detected change, based on response size and contrast measures. 
 
Seabed locations may be imaged several times during a survey due to sonar coverage overlap. 
Change detection results can then be fused across survey lines to remove inconsistent detections 
due to fish, co-registration errors, etc. First, detections corresponding to the same stationary object 
are clustered, based on geographical positions. Then, any additional sonar views of these locations 
are added to the clusters as missing detections. Dempster-Shafer Theory of Evidence 18 is used to 
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combine the positive (detections) and negative (missing detections) evidence into a fused 
confidence value for each potential object. In this work, objects with fused confidence values 
exceeding 0.5 and at least two single-view detections were reported as detected changes. 
 

3 SEA TRIALS 

The MANEX’14 exercise was organized by the NATO Science and Technology Organisation Centre 
for Maritime Research and Experimentation (CMRE) and was conducted from the NATO research 
vessel Alliance off the Ligurian coast in Italy in September 2014. FFI participated with scientists and 
the HUGIN-HUS AUV equipped with HISAS 1030. This interferometric SAS has 100 kHz centre 
frequency and 30 kHz bandwidth. The typical streaming image resolution is 4cm x 4cm. 
 
Figure 3 shows HISAS bathymetry and sonar mosaic of the operation area in Bonassola bay. The 
water depths range from 11 to 56 meters. Close to shore the seafloor is varied, with distinct regions 
of sand ripples, sea grass (posedonia oceanica), soft sediments, rocks and rock crops. The deeper 
water regions contain mostly smooth sediments, but internal waves19 in the water column 
introduced significant sonar image texture. A reference HISAS survey was performed on September 
23, followed by the deployment of multiple targets on the seafloor. The reference and repeat 
surveys were intended to run similar mission plans, but due to time constraints and technical 
difficulties only parts of the plan were executed, and then with some track misalignments, as 
displayed in Figure 4. The two repeat surveys were performed on September 24 in the time interval 
from 12:40 to 15:20 and on September 26 from 06:50 to 13:20, respectively. 
 
After the reference survey ten targets were deployed on the seafloor distributed along two recovery 
ropes. This included six dummy mines (CD1: cylinder, MD1-4: four truncated cones, RD1: wedge 
shape), two mine-sized rocks (Rock1-2) and two dummy diver bottles (Bottle1-2). In addition, an 
iron weight (Ballast1-2) was attached to the end of each recovery line. The objects Bottle1-2 and 
Ballast1-2 were smaller than mine size, but the ballasts produced strong highlights for most of the 
sonar views. In this paper, the ballasts are considered as deployed objects. 
 
The streaming SAS and ACD processing were performed on board the Alliance during the trials. 
 

 
 
Figure 3:   The survey area in Bonassola bay covered approximately 1.0km x 2.8km, with water 
depths ranging from 11 to 56 meters (left). The SAS mosaic (right) reveals complex and varied 
seafloor conditions in the shallow regions, including rock crops, sand ripples and patches of sea 
grass. The deeper regions have smooth sediment seafloor, but internal waves produced significant 
sonar image texture.  

Bathymetry SAS 
Mosaic 
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Figure 4:   The vehicle paths (based on post-processed navigation) from the reference survey 
(green) on September 23 before deployment of seafloor objects (red) and from the two repeat 
surveys (black) on September 24 (left) and 26 (right). The spirals correspond to vehicle surfacing for 
GPS position updates.  
 

4 RESULTS 

All streaming SAS images from the surveys were processed through the ACD scheme in Figure 2. 
The final results were ten detected changes from each repeat survey, as presented in Table 1. The 
highest fused confidence values correspond to the eight deployed mine-sized targets. The smaller 
ballast objects were both detected for survey 1, but only Ballast2 was detected for survey 2. The 
smaller Bottle1-2 objects were not detected. The listed number of object views (detection 
opportunities) includes all passes with detection of the object and passes without detection if the 
object lies within the sonar’s effective range, as estimated from the interferometric coherence. The 
table shows that the eight mine-sized objects were detected for all views, except one pass where 
manual examination reveals that co-registration failed due to marginal overlap between reference 
and repeat pass images. The total number of object views in Survey 1 is twice that of survey 2 (58 
vs. 29), because the objects then was imaged using two perpendicular lawnmower patterns (Figure 
4). This may also explain why the fused confidence values seem slightly higher for survey 1.  

 
Repeat survey 1 

24-Sep-2014 
Repeat survey 2 

26-Sep-2014 

Object Fused conf. # detect’s # views Object Fused conf. # detect’s # views 
CD1 1.00 4 4 CD1 1.00 2 2 
MD1 1.00 5 6 MD2 1.00 4 4 
MD4 1.00 7 7 MD4 1.00 4 4 
MD3 1.00 6 6 RD1 1.00 4 4 
MD2 1.00 5 5 MD3 0.99 2 2 
RD1 1.00 7 7 Rock1 0.99 4 4 

Rock2 1.00 6 6 MD1 0.98 2 2 
Rock1 1.00 5 5 Rock2 0.96 2 2 

Ballast2 0.86 5 6 Ballast2 0.58 2 3 
Ballast1 0.66 4 6 Unknown 0.58 2 2 

 
Table 1:  All detected changes from the two repeat surveys after multi-view fusion using a fused 
confidence threshold of 0.5 and requiring at least two detections of each object. The eight deployed 
mine-sized targets all attain high fused confidence values for both surveys, while the ballasts have 
lower values. The single false alarm (unknown object) is shown in the lower right plot of Figure 5.  
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Figure 5 displays ACD images for two example scenes. The reference images (top row) both 
contain various seafloor texture and objects, as well as schools of fish (one small school in the left 
scene and four large schools in the right). In the repeat-pass images (middle row) recorded three 
days later, two targets have been deployed in the left scene. One of the targets is located outside 
the effective sonar range, in an image region with significant multipath signal pollution. In both 
change images (bottom row) stationary clutter has been suppressed, thereby enhancing the 
temporal image differences. The repeat-pass target responses have been preserved (including their 
trailing highlights reflections from the sea surface), while the fish school highlights in the reference 
images have been inverted into dark responses. The change images also contain some residual 
texture, but the matched filter only detects the three mine-sized responses marked with yellow 
squares. The detection in the right image corresponds to the unknown object in Table 1 and is 
probably not due to fish, as it looked quite similar in a second view from the same survey. A 
plausible explanation is an abandoned fishing net fastened in the seafloor concrete blocks, but 
rearranged by sea currents between surveys 1 and 2. These examples illustrate the effectiveness of 
ACD for false alarm reduction. Applying the same matched filter directly on the left and right repeat-
pass images in Figure 5 produced 12 (including the two targets) and 10 detections, respectively.  
 
Analysis of all single-view detections before fusion reveals four additional detections of the 
deployed objects (compared to Table 1), distributed between Bottle1-2 in survey 1 and Ballast1 in 
survey 2. There were also 53 and 187 single-view false alarms (detections not corresponding to any 
of the 12 deployed objects) for surveys 1 and 2, respectively. This includes a few detections caused 
by specular reflections from the two recovery ropes. All these additional detections were 
inconsistent across survey lines and thus removed in the multi-view fusion stage due to missing 
detections and low confidence values (except the two detections of unknown object in Table 1). The 
majority of the false alarms appeared to be caused by compact schools of fish (or potentially a 
single, large fish) of mine-compatible dimensions and often located close enough to the seabed to 
cast a shadow just behind the sonar highlight (see Figure 6).  
 
The reason for the significantly larger number of false alarms in survey 2 is two-fold. Firstly, the total 
sonar area coverage is approximately 2.5 times larger than for survey 1. Secondly, the density of 
near-bottom fish appeared to be higher on the second survey. This interesting result may be due to 
intra-day variations in fish behaviour (e.g. feeding habits), as the first repeat survey was performed 
in the afternoon and the second repeat survey mostly before noon. It is difficult, however, to draw 
firm conclusions on these limited data sets with incompatible survey tracks. For both surveys, the 
50 detections with highest single-view confidence included only four non-fish false alarms. These 
were mostly due to baseline decorrelation and/or co-registration errors in the presence of significant 
track deviations and rough bathymetry (track offsets are actually visible in the left plot of Figure 4).  
 
Table 2 presents image matching results for the SIFT, SURF, U-SURF (rigid feature orientation) 
and STAR+BRIEF algorithms applied on the two example scenes in Figure 5. The number of 
extracted feature points varies between images, but is roughly the same for all methods. Results 
vary between the scenes, but the number of inlier matches is largest for STAR+BRIEF on both 
scenes. U-SURF also performs well and SIFT has the highest inliers-to-matches ratio. Similar 
behaviours have been observed on a larger and more varied SAS data set. SIFT and SURF are 
designed to tolerate large scene rotations, which is actually a disadvantage in this case, as 
differences in sonar image orientation are small between repeated surveys. 
 

Algorithm 
# Reference 

feature points 
# Repeat pass 
feature points 

# Matches 
# Inlier 

matches 

 Left Right Left Right Left Right Left Right 
SIFT 1810 1086 1543 1102  112 204 95 188 
SURF 1742 1288 1528 1339  125 242 61 188 
Upright-SURF 1742 1288 1528 1339  157 288 83 245 
STAR+BRIEF 1861 1189 1532 1162  246 281 187 249 

 
Table 2:   Results for four feature point algorithms applied on the left and right scenes of Figure 5.  
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Figure 5:   ACD results for SAS images (175m across-track x 100m along-track) of two scenes 
containing moderate seafloor roughness and various objects (left column) and concrete blocks, a 
partly immersed pipeline and fish schools (right column). The plots show the reference-pass images 
(top row), repeat-pass images (middle) and change images with highlighted detections (bottom). 
The two detections in the left image correspond to deployed targets MD2 and Rock1, while the 
detection in the right image is a false alarm, presumably caused by an abandoned fishing net.  
 

   
 
Figure 6:  ACD results for SAS images (40-160m x 75m) showing reference image (left), repeat-
pass image (centre) and change image (right) with two highlighted false alarms probably caused by 
compact schools of fish close to the seabed. Their highlight sizes and trailing shadows resemble 
target responses. Also visible are two undetected small schools of fish located higher above the 
seabed (seen by their larger highlight-shadow separation) and several internal wave patterns. 
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5 SUMMARY AND FUTURE WORK 

This paper presents incoherent automated change detection (ACD) results for HISAS 1030 sonar 
data recorded with HUGIN-HUS AUV during the MANEX’14 sea trials. The focused application was 
naval mine hunting and the processing successfully detected all eight deployed, mine-sized objects 
in two repeat missions with reference time intervals of one and three days, respectively. Target-like 
fish responses caused multiple false alarms on individual survey lines. These and other spurious 
false alarms were effectively filtered out by multi-view detection fusion. The processing was 
performed on streaming SAS imagery, which is the standard HISAS survey product. SAS image 
generation was not synchronized between the three surveys.  
 
The demonstration of ACD on standard SAS data from a full survey constitutes an important step 
towards an operational system. The next step will be to test the processing on more full-survey data 
from varied operations, including surveys with considerably longer time separations. 
Simultaneously, algorithm development will continue with particular focus on reliable data co-
registration in challenging conditions (large track offsets, temporal decorrelation and/or rough 
bathymetry) and robust single-line detection of new seafloor objects, i.e. improved discrimination of 
natural scene changes such as fish. As a required module in an operational change detection 
system for mine hunting, performance evaluation based on in situ sensor data will also be 
developed.  
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