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1. INTRODUCTION

Many structures occurring in underwater acoustics are constructed with an axially repeating section. Examples of
this are a periodically rib-stiffened cylindrical hull, fig 1, or a line array of transducers, fig 2. Such a system is
often excited, either by an incident plane wave or directly on the structure, in a manner with constant phase
difference between periodic units. If the number of repeating sectiens is large and also many acoustic wavelengths
in the extent, then it is often assumed that the system is infinite. Bloch’s theorem can then be used to state periodic
relations for displacements and pressures. In this paper a finite element based method for analysing such problems
is proposed. A combined structural/acoustic FE mesh is constructed for a cylindrical region of fluid containing one
periodic unit. Periodic constraints are applied between the ends. The curved surface of the acoustic FE faces is
coupled to a series which automatically satisfies the Bloch-Floquet relations,

2. PRESSURE EXPANSION IN FLUID

Consider an axially periodic structure immersed in an acoustic medium. Assume that the X direction is axial, and
let the periodic length be 2d. If the system is vibrating in a steady state, excited by harmeonic loading at circular

frequency (0 , and has a constant phase difference —2qd between neighbouring periodic units, then from

Bloch’s theorem it follows that all response quantities (displacement, pressure, force,...) must satisfy the
relationship

F(x+2d,r,8)=F(x,r,0)e% (1)

For the case of an incident plane wave travelling in direction #1 the phase is determined by the angle of incidence,
and

q=kn, (2)

where & is the wavenumber. By expanding F (x oF ,9 )e"q"‘ in the Fourier series it follows that

F(x,r8)=e™* S Fo(r8)e ¢ )

§=—o0
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where
—ikx

_— 1 d
Fs(r,9)=55fd e F(x,r0)dx

and
s
k,=—-gq
c

(4)

&)

In the acoustic medium the scattered component of the pressure field satisfies the Helmholtz equation

Vip+kip=0

. . . . im@
Taking a cylindrical axis set and assuming an €

2 m?
l—a (r——ap) 6 (kz Jp 0
ror\ or ax

Assuming further an e"‘-“" axial dependency this becomes

1 5( ap) ( 2J
— 0
rar or s p=

where

Y=kl = k°

&

circumferential variation, this reduces to

&)

(8)

%)

The solutions to equation (3) are Bessel functions. Choosing the functions to satisfy the Sommerfeld radiation
condition for travelling wave cases, and choosing radially bounded solutions otherwise, results in

(x r, 9 f)—'f (",Y )erk x mrBeKM

where

HY@B,» ifyl<0
Fulry D=1 K, (v ,») zfyf:»O
r—m ['fyf :0

and ﬁs—-l—\}—‘yi .
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3 COUPLING TO FINITE ELEMENTS

Assume that the pressure field in the region {(x J,.0)—d <x<+d,r2a ismodelled as a superposition

of a finite number of terms of the type in equation (10). The system in the finite cylindrical region can be modelled
with a mesh of acoustic/structural FE as in figure 3.

Assume that & is taken large enough such that the interface .S consists of acoustic FE faces. The discretized
equations are of the form:

[S]- o[ M] 1 (71’ W) _[{F)
[7] [S.1-1M1|l(p}  [(F.)

(1)2

(12)

where [S ] and [m are the structural stiffness and mass matrices, [T] is a coupling matrix, [S a ] and
M ] are acoustic “stiffness” and “mass” matrices, {2} is a vector of displacements on the structurai mesh,
a B
{ p} is a vector of pressures on the fluid mesh, {F } is a vector of forces applied directly to the structural mesh

and {Fa} are the *fluid forces’ caused by surface vibration on S'.
T N .
{F,) = [[NTu,ds W

where [N ] is the interpolation function row vector for pressures on the fluid mesh. The {Fa } vector must be

constructed so as to correctly couple the FE mesh to the series solution. Furthermere the Bloch-Flequet relations
must be applied as constraints to the FE matrices before equation (12) is solved.

Using only a finite number of terms from the series, the total pressure in the external region can be represented as:

+N, +N, _ .
P(x,r.0)= P(x,r,0)+ Z Z Fa(ry ?)e'k-"‘Ame""e | (14)
s=—-N m=-N,

The coefficients can be computed as:

An:sf:m(a;]’ 3) = ZT%:; -Ej—d E:—rt (P(x’a’e ) - P[(x:aae ))e—fk‘\--!e—imede dx {135)

Differentiating (14) with respect to ¥ gives

+N,  +N, w2y _
02 0B 5 Ol gy

s (16}
or oOr or

s==N_ m==-N,,
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Substituting in for Am in equation (16) from (15} and then substituting into (13) results in an equation of the
form:

(F,) =[AI'[DNA1{P} +(F,,} (17
where { A] has (2N, + 1)(2N,, + 1) rows, and the (s, )t/ row has the form

(o= [T [Nxa8)e™ e ™™ds dx | a8)

[ D] is a diagonal matrix and {F I’y } is a term due to the incident wave loading

v, Ofnl@ro) )
{FP!}= yp: pd Z Z ar .L;_n J;_d [N(x,a,e)].relerelme
SNen=te £ (a1 2) (19
[ [ P(xabe ™o +— [T [ (N 22 o
== ox'=— W p x==-d a b d
using the expression
P,(x y e) R,e u'cn reos(@-0,) 20)

it can be shown that only § = 0 contributes to the first term of equation (19).

Thus the equations to be solved are:

2n

[S]-w [ M] (71 {u} {F}
(7] 2[S] [M,]-[A]'[D][4] {{P}} Uy}

The periodic constraints must be applied before solution.

The methodology outlined above is similar to the doubly periodic case. which has been described by Hladks -
Hennion and Decarpigny [1].
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4. ANALYSIS RESULTS

The method described above has been implemented in the PAFEC VibroAcoustics code for both 3D and
axisymmetric models. This functionality has been tested on 3 problems, scattering of a normaily incident plane
wave by a rigid cylindrical surface, an infinite line array of point sources and the sound field generated by an
infinite linear array of coaxial ring transducers. In all these examples, the properties of water were assumed to be
density = lOOOkgm'J and speed of sound = 1500ms",

A 3D mesh composed of 12 quadratic 20 noded brick elements, illustrated in figure 4, was used to compute
scattering by the rigid cylinder, the radius of the cylinder was taken as Im. A comparison of pressure at the *far
point in the shadow zone' against frequency computed by the FE method and using a closed form series solution is
made in figure 5.

For the array of point sources, the nth source was assumed to lie at (n,0,0). The phase of the nth source was taken
—ikr
e

to be at 0.296192xn. Each source was assumed to produce an distribution. Results were computed using

r
the axisymmetric mesh of figure 6. Table 1 gives a comparison with a series method using 2000001 terms for the
pressure at (0, 0.5, 0).

Table 1
' Frequency..: . - =, - .y Pressure(series)ii.. Awoso oo Pressure (FE) -
100 ‘ 4.14317-3.1243% 4.14330-3.12437i
200 2.08882-3.02216i 2.07786-3.022151 -

The ring projectors were taken to have inner radius 0.0508m, outer radius 0.05715m, axial length 0.028m and be
made of PZT4, polarized radially. The axial separation was taken as 0.052m. The analysis was performed using
the axisymmetric mesh of figure 7. The conductance/ring graph computed is shown in figure 8 . Results from
finite arrays calculated using BE have been published previously by Gallaher [2] but these are not directly
comparable with the current work.

5. CONCLUSIONS - FUTURE WORK

The proposed method has been shown to work well on the first two test problems. The results from the analysis of
the transducer array are plausible. It is hoped to compute results for large finite arrays for comparison with the
infinite results. The technique seems a promising method for analysing very long linear arrays of regularly spaced
transducers. ’
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Fig 1

PERIODICALLY RIB-STIFFENED CYLINDER
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Fig 2

COAXIAL ARRAY OF RING TRANSDUCERS
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FINITE ELEMENT MESH FOR AXIALLY PERIODIC AMALYSIS
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