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I. INTRODUCTION

Many structures occurring in underwater acoustics are constructed with an axially repeating section. Examples of

this are a periodically rib-stifiened cylindrical hull, fig 1, or a line array of transducers, fig 2. Such a system is
often excited, either by an incident plane wave or directly on the structure, in a manner with constant phase
difference between periodic units. If the number of repeating sections is large and also many acoustic wavelengths

in the extent, then it is ofien assumed that the system is infinite. Bloch's theorem can then be used to state periodic

relations for displacements and pressures. In this paper a finite element based method for analysing such problems

is proposed. A combined strucmral/acoustic FE mesh is constructed for a cylindrical region of fluid containing one

periodic unit. Periodic constraints are applied between the ends. The curved surface of the acoustic FE faces is
coupled to a series which automatically satisfies the Bloch-Floquet relations.

2, PRESSURE EXPANSION IN FLUID

Consider an axially periodic structure immersed in an acoustic medium. Assume that the X direction is axial, and

let the periodic length be 2d. If the system is vibrating in a steady state, excited by harmonic loading at circular

frequency 0) , and has a constant phase difference -2qd between neighbouring periodic units, then from

Bloch's theorem it follows that all response quantities (displacement, pressure. force...) must satisfy the

relationship

F(x + 2d,r,9) = F(x,r,e)e'2’qd (n

For the case of an incident plane wave travelling in direction [I the phase is determined by the angle of incidence,

and

q = knx (2)

where k is the wavenumber. By expanding F(x,r,9 )8-in in the Fourier series it follows that

.1“

F(x,r,9) = e'i‘” Zia-,9); d (s)
S=—ID

Proc. |.O.A. Vol.18 Part 5 (1996) 177

 



 

   Proceedings of the Institute of Acoustics

ACOUSTIC ANALYSIS OF LONG TRANSDUCER ARRAYS

   
    

   

  

  
   

  

  

   

 

   

   

  
 

   

where

__ 1 d 4ka '

FI (r,9) = a; Ed 2 F(x,r,9)dx (4)

and

1133
k, = — - q (5) ‘

c ‘

la the acoustic medium the scattered component of the pressure field satisfies the Helmholtz equation

1

V' p + k2p = 0 - (6)

Taking a cylindrical 3x15 set and assuming an e”" Circumferential variation, this reduces to

r a r x

i
16(6p] 62p[2m2] ‘
—— —— +———+ k —— =0

rar 2 r2 (7)

Assuming further an eik-‘x axial dependency this becomes

16[ 6p) [2 m2) I

rar rar Y: r2 p U

where

Y3=k3-k2 <9)
The solutions to equation (8) are Bessel functions. Choosing the functions to satisfy the Sommerfeld radiation

condition for travelling wave cases, and choosing radially bounded solutions otherwise, results in

p(x’r,e’r)=fm(r;yi)eiereimfiei(ul (10)

where

Hff’wsr) iin<0
LOWE): KAY!) I'fi’3>0 (In

F” ifY3=0

and BX=I‘)—YE‘
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3 COUPLING TO FINITE ELEMENTS

Assume that the pressure field in the region {(x,r,6):—d _<_ x S +d,r Z a is modelled as a superposition

of a finite number of terms of the type in equation (10). The system in the finite cylindrical region can be modelled
with a mesh of acoustic/structural FE as in figure 3.

Assume that a is taken large enough such that the interface S consists of acoustic FE faces. The discretized
equations are of the form:

[SJ-w2[M] [TJT {u} _ {F}
m miner—[Mn {p} ' {Fa} “2’

where [S] and are the structural stiffness and mass matrices, is a coupling matrix, [Sn] and

M are acoustic "stiffness" and “mass” matrices, u is a vector of dis lacements on the structural mesh,a P

{p} is a vector of pressures on the fluid mesh, {F} is a vector of forces applied directly to the structural mesh

and {Fa} are the ‘fluid forces’ caused by surface vibration on S .

r ' .{Fa} = luv] u,dS , (1,)

where [N] is the interpolation function row vector for pressures on the fluid mesh. The {Fa} vector must be

constructed so as to correctly couple the FE mesh to the series solution. Furthermore the Bloch-Floquet relations

must be applied as constraints to the FE matrices before equation (12) is solved.

Using only a finite number of terms from the series, the total pressure in the external region can be represented as:

+N_,r +N,,, I I

P(x,r,9) = P[(x,r,9) + Z Z fm(r;y :)e‘kv""A,,ue""e (14)

s=—N..-m=—N...

The coefficients can be computed as:

2 1 d 7‘ -'k‘. -‘ 0
Anzsfln(a;y s) = I: L: (P(x!a’e)_ P[(xra76 ))e “Xe [m dx ([5)

41rd ‘--d "7‘

Differentiating (14) with respect to r gives

+N, +N,,, _ 2 _ I

§£=Qfl+ Z Z afm(rayx)etk_,xA 61an (16)
"LY

a I. a r x=—/V_‘ m=-N a rIn
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Substituting in for Am in equation (16) from (15) and then substituting into (13) results in an equation of the

form:

unqmfimmum+mn on

where [A] has (21V_Y +1)(2Nm +1) rows, and the (s,m)th row has the form

{A}; = [N(x,a,e)]e"'“:‘e“'"°de dx (18)

[D] is a diagonal matrix and {FM } is a term due to the incident wave loading

_ 2
+NY +an afrrl(a"lls)

mgr; Z 2 ar [N(x,a,e)]fe‘k-"e‘“°
47w)2 d __ ,,,__ -—

p " N" ' N" Maw?) 09)
d _‘ . . I 1 1: d 'BP[NIT-54M0) p r

using the expression

Pl(x,r’e) = Ee—iknxxe-iknficosQ—B") (20)

it can be shown that only S = 0 contributes to the first term of equation (19).

Thus the equations to be solved are:

wkwfiM] [NT Yo} {n

[T] -a)l—2[Sa]_[Mg]_[l—4-]T[D][A] {p} = {Fm} (21)

The periodic constraints must be applied before solution.

The methodology outlined above is similar to the doubly periodic case‘ which has been described by Hladky

Hennion and Decarpigny [l].
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4. ANALYSIS RESULTS

The method described above has been implemented in the PAFEC VibroAcoustics code for both 3D and
axisymmetric models. This functionality has been tested on 3 problems, scattering ofa normally incident plane

wave by a rigid cylindrical surface, an infinite line array of point sources and the sound field generated by an
infinite linear array of coaxial ring transducers. In all these examples, the properties of water were assumed to be

density = lOOOkgm'J and speed ofsound = 1500ms‘l.

A 3D mesh composed of 12 quadratic 20.noded brick elements, illustrated in figure 4, was used to compute
scattering by the rigid cylinder, the radius of the cylinder was taken as lm. A comparison of pressure at the ‘far
point in the shadow zone' against frequency computed by the FE method and using a closed form series solution is
made in figure 5,

For the array of point sources, the nth source was assumed to lie at (n.0,0). The phase of the nth source was taken

e—r‘kr

 

to be at 0.296192xn. Each source was assumed to produce an distribution. Results were computed using
r

the axisymmetric mesh of figure 6. Table I gives a comparison with a series method using 2000001 terms for the
pressure at (0, 0.5, 0).

Table l

.» - Frequency.'.i :. - -. -- ' . ~. '-Pre.rsrv(srie.r)==§'. :;'v- - 3Press'ute (FE)-

 

  
[ 4.14317—3.l2439i 4.14330-3.12437i

2.08882-3.02216i 2.07786-3.02215i

The ring projectors were taken to have inner radius 0.0508m, outer radius 0.05715m, axial length 0.028m and be
made of PZT4, polarized radially. The axial separation was taken as 0.052m. The analysis was performed using

the axisymmetric mesh of figure 7. The conductance/ring graph computed is shown in figure 8 . Results from

finite arrays calculated using BE have been published previously by Gallaher [2] but these are not directly

comparable with the current work.

5. CONCLUSIONS - FUTURE WORK

The proposed method has been shown to work well on the first two test problems. The results from the analysis of

the transducer array are plausible. It is hoped to compute results for large finite arrays for comparison with the

infinite results. The technique seems a promising method for analysing very long linear arrays of regularly spaced

transducers. '
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Fig 1

PERIODICALLY RIB-STIFFENED CYLINDER
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Fig 2

COAXIAL ARRAY OF RING TRANSDUCERS
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FINITE ELEMENT MESH FOR AXIALLY PERIODIC ANALYSIS

Fig 3

face X='U

Fig 4

MESH USED TO ANALYSE

SCATTERING BY RIGID CYLINDER
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Fig6 MESH USED TO ANALYSE
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