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ABSTRACT
Hearing disorders in industrialized countries are widespread. In Germany, there are approximately
14 million cases,  and it  is  one of the most  common diseases.  75% of  those affected  don’t  use
hearing aids, and accept possible personal  consequences such as unemployment, depression and
dementia that  also have larger  economic  implications. Studies  have  proven that  individualized
sound adjustment can result in better quality of life. In the rapidly growing hearables (devices like
headphones, headsets and hearing aids) market, sound personalization is an emerging trend. Most
recent high-priced developments in the field of hearing aids integrate AI based self-adjustment of
sounds. In this article, we introduce new approaches to integrating AI into hearing aids for more
advanced self-determined hearing. We examine the benefits and limitations of various applications
of AI in hearing aids today, and  discuss further developments of AI in hearing care that might be
available in the future.
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1. INTRODUCTION

Artificial Intelligence nowadays is mostly referring to some form of deep learning running on 
artificial neural networks that mimic neural connections in the brain. This paper gives an overview 
of new approaches in integrating AI in hearing aids for more self-determined hearing. 
In order to achieve a more user-driven approach to individualized sound in hearing aids, machine 
learning, a domain in the field of artificial intelligence, has been employed. Hearing aids process 
data received from users and acoustic environments and perform complex tasks autonomously or 
adaptively, learning from accrued experience to improve results. In this paper, we present and 
discuss current AI applications that are already integrated into commercially available hearing aids, 
which we consider to be particularly effective for the enrichment of everyday use. These 
advancements in AI can be a turning point for the future of hearing aids, and we discuss the further 
potentials thereof.
The fitting of hearing aid amplification algorithms are based on scientific evaluation in lab 
measurements and the audiogram, and address the average user and listening environment by 
incorporating speech intelligibility and loudness perception models as in the NAL-NL2 procedure 
(Keidser et al., 2011). However, a growing body of hearing research studies shows that hearing 
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preferences vary significantly between people, even if they have the same hearing ability (Nelson et
al., 2018; Johansen et al., 2018). The prescriptive fitting rules for average users in an average 
listening environment can only be seen as a starting point for further fine tuning to the user’s 
subjective needs. Fitting formulae can be individualized to some extent following parameters like 
gender, hearing aid experience or age. General settings like preferred gain levels, as well as, 
loudness and discomfort levels vary substantially between individuals. But also, preferred settings 
of the same user in specific listening situations vary, and importantly, the intention of the user plays
a key role. For example, whether the user intends to actively listen to a concert or passively listen to
music at a cafe accounts for differences in their preferences for sound modulation. The common 
practice amongst hearing acousticians is to iteratively fine-tune the hearing-aid’s fit in successive 
appointments with individual patients. However, this process is time consuming.  Patients can have 
difficulties describing their perceptions, and audiologists have difficulties interpreting the users’ 
descriptions. To overcome this barrier, methods of self-fitting by the hearing aid user have been 
implemented and evaluated (Nelson et al., 2018; Chalupper et al., 2009; Dreschler et al., 2008; 
Gößwein et al., 2022). The result of the self-fitting may be different when set for optimal speech 
understanding or for pleasantness (Gößwein et al.2022) or for speech in noise. In order to handle 
different environments, hearing aid wearers could store different presets, but this would still require 
selecting preferences manually. To automate these different settings machine learning comes into 
play. To better adapt hearing aids to individuals’ needs in any given situation, research is being 
done to integrate machine learning, either for automatically selecting presets according to the 
current environmental, acoustical inputs, or to optimize a general sound setting to better fit all 
environmental situations. Studies on trainable hearing aids investigate how hearing aid parameters 
like loudness, frequency weighting and compression curves could be self-fitted by the user with 
machine learning tools  (Dillon et al., 2006; Zakis et al., 2007; Chalupper et al., 2009; Convery et 
al., 2011). One commercial product that resulted from such research is Siemens’s SoundLearn 
technology, for example. In recent years, artificial intelligence became famous through emerging 
technologies like speech recognition. The advancements in chip technology allow such learning 
methods to be performed on smartphones and even integrated in hearing aids. The current, high-
priced developments in the field of hearing aids integrate AI-based self-adjustment of sounds. 

2. TECHNOLOGY OVERVIEW 

Some hearing aid manufacturers such as Signia, Widex, Oticon, Starkey and Phonak (see table1) 
have already introduced a form of artificial intelligence in their hearing aids, which today are often 
based on deep neural networks (DNN). Quite common is the use of machine learning for selecting 
predefined hearing settings based on acoustic environment classifications (AECs).  AEC algorithms
are trained on a vast amount of sound recordings, and analyze and classify the current user's 
acoustic environment. The AEC of Starkey uses the information of the AEC to control predefined 
settings for noise reduction, directionality, and gain (Fabry & Bhowmik, 2021). This is incorporated
in Starkey’s “Edge Mode” of a smartphone microphone or an external microphone array for an 
optimized voice enhancement, and these devices also provide processing power for edge 
computing. Additional processing power might look like an advantage but has the downside, that 
users always need to carry an edge device, the microphones always need to be manually placed, and
there is added delay due to the Bluetooth connection. Due to these limitations, this solution is only 
viable for  users with a pure tone average hearing loss of greater than 50 dB HL (Fabry & 
Bhowmik, 2021; Cook, 2020). Phonak  offers a DNN-based AEC within the hearing aid that allows 



it to seamlessly blend between environments with different sound settings and that also uses  the 
hearing aid’s motion sensor to distinguish between listening situations (e.g., Sport, Pub). The 
following table gives an overview of hearing-aid manufactures that offer AI or machine learning 
capabilities:

Table 1: Technology overview about AI integration in current hearing aids. 

Company Signia Widex Oticon Starkey Phonak

Name Signia 
Assistant

Sound Sense
Learn

More Sound IntelliVoice AutoSense OS / 
Speech Enhance

Year 2020 2018 2021 2020 2021

User 
Adjustmen
t / 
Labeling 
method

Recommend.
System

A/B 
comparison 
and degree 
of preference

ratings of 
process. 3D 
sound scenes

analyzing 
individual’s user
sound 
environments 
(edge mode) / 
labeled 
environments

labeled 
environments and 
motion sensor data

Learning 
Paradigm

DNN / 
SOM?

Bayesian 
optimization

Recurrent 
Network / 
LSTM

DNN-based 
feature 
classification of 
individual’s user
environments

DNN-based 
feature 
classification

Goal individualize
d sound

individualize
d sound 

sound 
enhancement

AEC for 
controlling noise
reduction, 
directionality 
and gain settings

sound 
optimization by 
blending between 
environment 
settings

Cons lesser 
control of 
the user

higher 
adjustment 
effort 

no individual 
sound

delay of 
smartphone 
processing, only 
usable for higher
hearing loss.

No AI-based  
sound 
optimization

Pros quick results,
based on 
experience

precise audio
preference 
based 
settings

clear and 
distinct sound

edge computing 
of external 
microphones 
(smart-phone)

seamless blending 
between settings 
in mixed 
environments

Other technologies exist for sound enhancement that try to replace traditional algorithms for hearing
aids, such as beamforming and noise reduction. These are based on simplistic situational and 
acoustical assumptions, such as, received speech from a frontal direction with static environmental 
background noise. The manufacturer, Oticon, has developed a data-driven approach to a DNN-
based on daily life listening environments that has learned to distinguish which acoustical 
information belongs to the foreground and that which belongs to the background and can be 
reduced (Santurette & Behrens, 2020; Brændgaard & Loong, 2020). The sound scene is then 



cleaned in a way to help the users to make better sense of their environment that is often perceived 
as blurred. Together with spatial balancing of the analyzed environment while maintaining binaural 
cues, this approach offers great potential towards solving remaining issues in the perception of 
sound environments that arise with conventional sound processing in hearing aids. We consider this
approach as trend-setting for more user-oriented development of hearing aid algorithms and review 
the comprehensive publications of Santurette & Behrens (2020) and Brændgaard & Loong (2020) 
in chapter 3. The final step towards self-determined hearing is, of course, the training of 
individualized hearing aid settings based on the user's input. Such trainable hearing aids have been 
around for some time (Chalupper et al., 2009) but recent developments in AI technology bring this 
training to another level. Employees of Widex and WS Audiology published an article (Balling et 
al., 2021) describing an AI-driven self-adjustment method via A-B comparisons. We consider this 
article as especially valuable because it contains comprehensive data and analysis that provides 
good insight into the user-driven application of AI in everyday life. For this reason, we place a 
special focus on the review of this publication in chapter 4. 

3. AI FOR SOUND ENHANCEMENT OF REAL ENVIRONMENTS 

In this chapter, we discuss the MoreSound Intelligence (MSI) feature of Oticon More™ 
technology, as it is documented in the publications by Santurette & Behrens (2020) and Brændgaard
& Loong (2020). The MSI approach is to make hearing-aid technology open up to all meaningful 
sounds, not only speech-like sounds, to create a clear and naturally perceived sound contrast 
between the important elements in the scene and the background. That is to be achieved by letting 
the meaningful sounds (such as speech, music, and important environmental sounds) stand out from
background sounds (such as babble or noise), while preserving access to all sound sources and all 
directions that have distinct information. As all sound information is accessible to the brain, users 
should be able to better focus on, understand and remember sounds of interest, as documented in 
clinical research (Santurette et al., 2020). This approach is fundamentally different from the 
conventional components of existing hearing aids algorithms, which can reduce the perception of 
sound scenes in different ways: Directionality reduces access to sounds from the sides and the back 
of the user; Noise reduction reduces access to all sounds that are not seen as speech; Compression 
reduces access to important sound details that matter to the brain, and feedback management 
reduces access to optimal gain in dynamic situations. The sound processing steps of the MSI 
include Spatial Clarity Processing, followed by Neural Clarity processing. Additionally, a sound 
enhancer provides dynamic sound details when noise suppression is activated, predominantly in 
difficult sound environments. The processing step of Spatial Clarity Processing distinguishes 
between difficult and easy listening environments. In easy sound environments it simulates spatial 
hearing by mimicking the function of the outer ear, called the Virtual Outer Ear (VOE). For the 
VOE, three pinnae shapes are available, which are selected according to the shape of the individual 
user’s pinna to simulate the user's usual spatial hearing. In difficult listening environments, the 
processing of the spatial hearing is taken on by a spatial balancer, supplied with an omnidirectional 
microphones signal and a beamformer-based on Minimum-Variance Distortionless Response 
(MVDR). The next MSI processing step, the Neural Clarity Processing, balances the sound scene 
by a DNN that mimics how a human brain works. Being trained on millions of real life sound 
scenes the DNN has learned which elements of real sound scenes carry more information and which
don’t, and what a balanced relationship between these elements should comprise "average user in 



average listening environment" standards. The result is a more detailed contrast between the 
meaningful sounds and the background (Santurette and Behrens 2020, pp. 4). 

3.1 DISCUSSION ON MORESOUND INTELLIGENCE (MSI)  
The MSI technology represents a big step forward towards more integration of user perception in

hearing aid development. The processing chain of MSI distinguishes between easy and difficult 
listening environments, for which two different processing steps are provided. With future 
development in AI, perhaps a binary distinction will no longer be necessary, but rather that the 
different approaches can be interpolated. It could be interesting to observe and analyze how 
different user-specific listening situations and intentions affect perceptual needs. AI could be used 
in the analysis, as well as, in the application of appropriate adjustments. It is conceivable that future 
AI developments will allow even more customization, for example, by scanning the individual 
pinna of the user and determining the DI.

4. AI FOR SOUND INDIVIDUALIZATION

Balling et al. (2021) present an AI approach to sound individualization driving the Sound Sense 
Learn (SSL) technology. This technology enables hearing aid wearers to adjust the sound in 
challenging everyday listening situations. For this, AI optimizing A-B comparisons are used, users 
iteratively choose between two sound settings, and indicate how much one sample is preferred 
above the other. The stimuli are sampled from the best clusters for the activity that the user has 
indicated. A-B samples are presented and selected consecutively, until the user has found the 
preferred balance. The integrated Bayesian optimization takes on the task of optimizing the 
following proposed sound setting in the iterative sound selection process, such that only a few 
selection steps are necessary. The individualization of the sound adjustment is driven forward 
particularly by an active learning approach entailed by the machine learning model continuously 
updating based on user input (see figure 1). 
The Bayesian model used here processes the knowledge on previous A-B comparisons to select the 
next A-B samples. The Bayesian Gaussian process (GP) assumes the user's preferences for sound as
an internal preference function that is approximated by evaluating the data from the A-B 
comparisons. An Expected Improvement (EI) measures the amount of improvement per A-B 
comparison that can potentially yield to the maximal value of the function. After each response 
from the user, the Bayesian Gaussian process (GP) model is updated, and the EI criterion is 
evaluated to find a new A-B comparison that will yield to the optimal setting for the user.



Figure  1: The actor (hearing aid user) in a daily life sound scene gets an optimized setting via
selection  of  A-B  sound  samples  comparisons.  More  than  2000  settings  are  possible,  but  the
Bayesian optimization reduces this to an amount of maximum 24 sound sample comparisons. 

Via data exchange on a cloud server, the clinician can observe the personal programs that the user 
has created, what settings were established and how much each program has been used. If there are 
systematic trends, it is the clinician’s responsibility to implement a more universal adjustment of the
gain. 
Three laboratory studies yielded promising results. One laboratory study showed that 8 out of 10 
participants achieved satisfactory sound adjustments after using SSL. The results of two additional  
laboratory studies (no number of participants given) showed that personalized program settings for 
basic audio quality were significantly preferred to the baseline setting. The preference of listening 
comfort and speech clarity were also considered, but in the results, participants did not show 
significant preference in comparison to baseline settings (Balling et al. 2021, pp 286). In a daily live
survey, 118 experienced hearing aid users rated their satisfaction with different aspects of use. 53 of
the participants indicated that they had used SSL (Balling et al. 2021, pp 286). It is assumed that 
everyone felt the need to adjust their hearing aids, which would be due to their assumptions of 
providing a well-fitted hearing aid. As part of the daily live survey, data was collected and stored on
a cloud computer the following data were stored and analyzed: The settings and amount of use of 
the created programs, the activities and intentions indicated by users when SSL was used, and the 
settings compared and the associated degree of preference. For the analysis of individual 
preferences in individual listening environments 20.000 user selected programs for gain settings of 
bass, middle and treble frequencies were stored. The settings were almost evenly distributed across 
all selectable settings as can be seen in figure 2. 

Figure  2:  This schematic  graphic  (based  on  Balling  et  al.,  2021,  page  288)  visualizes  the
distribution of individual preferences in individual listening environments of 20.000 users. 

As part of the data collection, users also indicated the activities in which they made a sound 
adjustment with SSL. 31.772 activities and the associated user-selected sound adjustment programs 
were analyzed. The activity “watching TV” was the overwhelmingly most frequent activity 
indicated by users. Second was the activity “socializing”, competing with “speech”. Besides the 
most common intentions of conversation and suppressing disturbances, another major type of 
intention was enjoying sound and music. According to Balling et al. (2021), TV is likely to be a 



relatively easy situation to create SSL programs for, in contrast to a one-to-one conversation, where 
it’s likely to be more difficult to systematically complete the process of A-B comparisons. 
Users could also rate the degree of preference for their chosen program after A-B comparisons. 
10,000 adjustment setting programs for daily life were chosen and acoustical and user inputs were 
analyzed using machine learning. The result of these analyses was a defined number of clusters for 
each activity. For example, while there was a single cluster for transport, i.e., generally turning 
down the volume, the programs for watching TV were distributed over more clusters, indicating 
diverse preferences (see figure 3). 

Figure 3: These schematic graphics (based on Balling et al., 2021, page 291) give an impression of
the  significant  characteristics  of  the  cluster  distribution  as  an  example  for  the  sound  scenes
transport and TV. For transport only one cluster occurred: the general turning down volume. For
watching TV the programs were distributed over more clusters. 

4.1 DISCUSSION ON SOUND SENSE LEARN (SSL)
The paper indicates that there is a wide range of individual preferences within individual 

listening environments, rather than generalized group preferences. There are obviously no default 
settings that can be generalized, which raises the question of whether or not basic settings should be
fundamentally reconsidered as a static average function, like current prescriptive rules. AI could 
play an important role in such considerations and optimize the fine-tuning to individual 
environments using machine learning models capable of generating individual baseline settings 
automatically. The cluster distribution for the sound scenes transport shows that transport sounds 
are perceived as noise. This is a case where a personalized program is clearly preferred over a 
default setting: the personalized, AI-assisted program could potentially replace the general default 
hearing aid setting. Since SSL can only be used in situations with sufficient time, this could indicate
that the data collected via cloud was biased in terms of the prevalence of activities in which users 
needed sound adjustments. That means it is conceivable that there were difficult sound scenes 
where the need for sound adjustments existed, but was not carried out due to insufficient time.
It is also mentioned that a satisfactory result was often achieved in less than the maximum 24 A-B 
selection steps, because convergence is already achieved. The findings could also be situation-
related, since the selection process requires a high level of concentration from the user. This makes 
it clear how much an efficient user-driven AI is importantly intertwined with a user-friendly process
for sound adjustment. In the SSL application discussed here, AI is used to optimize the fitting 
process at A-B iterations and allows users to spontaneously adjust the sound in everyday situations. 
From the scientific perspective the results provide a detailed insight into individual hearing 
preferences due to the ability to calibrate nuanced sound settings. However, the adjustment process 



requires a lot of attention and can only be carried out in an iterative process, which means that 
everyday use is only possible to a limited extent. Studies have shown a good test-retest reliability 
for user settings derived in a production task setting sound and loudness directly (Gößwein et al., 
2022; Nelson et al., 2018; Rennies et al., 2016). The authors state that in some cases users may not 
be able to understand the adjustment controls, and the need for something they cannot change might
lead to an unsuccessful trial and error process. The authors do not show evidence if these users who 
have difficulties to adjust sound and loudness directly achieve better results by adjusting sounds via 
A-B comparison. It remains unclear if the A-B comparison task is a viable process to create better 
fits in everyday life for a given user than setting sound and loudness directly. A possible solution to 
this dilemma between precision and simplicity a could be a self-fitting setting e.g. as described by 
Gößwein et al. 2022, followed by an A-B comparison task on demand, which could combine the 
best of both worlds: quick changes in conversations and comparison tasks for higher precision. In 
this way, individual sound adjustments could also be made possible for listening situations in which
users need quick sound adjustments. The authors think that assumptions about user motivation 
based solely on the technical data collected may not be correct. For example, 53 of 118 participants 
did not use SSL and it is assumed that the hearing aid is already well-fitted. Another example is, 
that Balling et al. (2021) assume user satisfaction if more than a third of users do not use SSL or 
fewer than 24 A-B comparisons have been carried out. With the help of subjective user feedback, 
these assumptions could be validated. 

   
5. CONCLUSIONS

There are many ways of integrating AI into hearing aids, providing more sound control and 
additional features to the user. Most applications focus on speech intelligibility, but other 
approaches emphasize a balanced audio scene. Self-adjustments allow user-driven sound adaptation
in challenging hearing situations. Using AI, hearing aid users are given the opportunity to select 
preset programs for more speech intelligibility or to create individual user-specific programs for 
challenging hearing situations. All these applications are promising and show the potential of AI for
hearing aids. Even though the AI applications address individual needs, the data analyses still 
focuses on the average or the usual hearing loss. A next step for more individualization for the 
benefit of the user’s satisfaction could be that AI helps to individualize the sound adjustment 
process in a way that it is easier and quicker to use, sound adjustments can be done in fine 
gradations and in bigger ranges so that basic settings could also be affected. The individualization 
of sound adjustments for user-specific listening environments, driven by self-fitting in combination 
with AI, will be groundbreaking for future developments for self-determined hearing with hearing 
aids. 
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