Self-determined hearing through artificial intelligence (AI)

Peggy Sylopp'
sincEARe UG
Strelitzer Str. 60, 10115 Berlin, Germany

Tobias Bruns®

Fraunhofer Institute for Digital Media Technology (IDMT), Oldenburg Branch for Hearing, Speech
and Audio Technology (HSA)

Marie-Curie-Strafie 2, 26129 Oldenburg, Germany

ABSTRACT

Hearing disorders in industrialized countries are widespread. In Germany, there are approximately
14 million cases, and it is one of the most common diseases. 75% of those affected don’t use
hearing aids, and accept possible personal consequences such as unemployment, depression and
dementia that also have larger economic implications. Studies have proven that individualized
sound adjustment can result in better quality of life. In the rapidly growing hearables (devices like
headphones, headsets and hearing aids) market, sound personalization is an emerging trend. Most
recent high-priced developments in the field of hearing aids integrate Al based self-adjustment of
sounds. In this article, we introduce new approaches to integrating Al into hearing aids for more
advanced self-determined hearing. We examine the benefits and limitations of various applications
of Al in hearing aids today, and discuss further developments of Al in hearing care that might be
available in the future.

Keywords: Hearing aid; artificial intelligence, machine learning; deep neural networks; self-
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1. INTRODUCTION

Artificial Intelligence nowadays is mostly referring to some form of deep learning running on
artificial neural networks that mimic neural connections in the brain. This paper gives an overview
of new approaches in integrating Al in hearing aids for more self-determined hearing.

In order to achieve a more user-driven approach to individualized sound in hearing aids, machine
learning, a domain in the field of artificial intelligence, has been employed. Hearing aids process
data received from users and acoustic environments and perform complex tasks autonomously or
adaptively, learning from accrued experience to improve results. In this paper, we present and
discuss current Al applications that are already integrated into commercially available hearing aids,
which we consider to be particularly effective for the enrichment of everyday use. These
advancements in Al can be a turning point for the future of hearing aids, and we discuss the further
potentials thereof.

The fitting of hearing aid amplification algorithms are based on scientific evaluation in lab
measurements and the audiogram, and address the average user and listening environment by
incorporating speech intelligibility and loudness perception models as in the NAL-NL2 procedure
(Keidser et al., 2011). However, a growing body of hearing research studies shows that hearing
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preferences vary significantly between people, even if they have the same hearing ability (Nelson et
al., 2018; Johansen et al., 2018). The prescriptive fitting rules for average users in an average
listening environment can only be seen as a starting point for further fine tuning to the user’s
subjective needs. Fitting formulae can be individualized to some extent following parameters like
gender, hearing aid experience or age. General settings like preferred gain levels, as well as,
loudness and discomfort levels vary substantially between individuals. But also, preferred settings
of the same user in specific listening situations vary, and importantly, the intention of the user plays
a key role. For example, whether the user intends to actively listen to a concert or passively listen to
music at a cafe accounts for differences in their preferences for sound modulation. The common
practice amongst hearing acousticians is to iteratively fine-tune the hearing-aid’s fit in successive
appointments with individual patients. However, this process is time consuming. Patients can have
difficulties describing their perceptions, and audiologists have difficulties interpreting the users’
descriptions. To overcome this barrier, methods of self-fitting by the hearing aid user have been
implemented and evaluated (Nelson et al., 2018; Chalupper et al., 2009; Dreschler et al., 2008;
GoBwein et al., 2022). The result of the self-fitting may be different when set for optimal speech
understanding or for pleasantness (GoBwein et al.2022) or for speech in noise. In order to handle
different environments, hearing aid wearers could store different presets, but this would still require
selecting preferences manually. To automate these different settings machine learning comes into
play. To better adapt hearing aids to individuals’ needs in any given situation, research is being
done to integrate machine learning, either for automatically selecting presets according to the
current environmental, acoustical inputs, or to optimize a general sound setting to better fit all
environmental situations. Studies on trainable hearing aids investigate how hearing aid parameters
like loudness, frequency weighting and compression curves could be self-fitted by the user with
machine learning tools (Dillon et al., 2006; Zakis et al., 2007; Chalupper et al., 2009; Convery et
al., 2011). One commercial product that resulted from such research is Siemens’s SoundLearn
technology, for example. In recent years, artificial intelligence became famous through emerging
technologies like speech recognition. The advancements in chip technology allow such learning
methods to be performed on smartphones and even integrated in hearing aids. The current, high-
priced developments in the field of hearing aids integrate Al-based self-adjustment of sounds.

2. TECHNOLOGY OVERVIEW

Some hearing aid manufacturers such as Signia, Widex, Oticon, Starkey and Phonak (see tablel)
have already introduced a form of artificial intelligence in their hearing aids, which today are often
based on deep neural networks (DNN). Quite common is the use of machine learning for selecting
predefined hearing settings based on acoustic environment classifications (AECs). AEC algorithms
are trained on a vast amount of sound recordings, and analyze and classify the current user's
acoustic environment. The AEC of Starkey uses the information of the AEC to control predefined
settings for noise reduction, directionality, and gain (Fabry & Bhowmik, 2021). This is incorporated
in Starkey’s “Edge Mode” of a smartphone microphone or an external microphone array for an
optimized voice enhancement, and these devices also provide processing power for edge
computing. Additional processing power might look like an advantage but has the downside, that
users always need to carry an edge device, the microphones always need to be manually placed, and
there is added delay due to the Bluetooth connection. Due to these limitations, this solution is only
viable for users with a pure tone average hearing loss of greater than 50 dB HL (Fabry &
Bhowmik, 2021; Cook, 2020). Phonak offers a DNN-based AEC within the hearing aid that allows



it to seamlessly blend between environments with different sound settings and that also uses the
hearing aid’s motion sensor to distinguish between listening situations (e.g., Sport, Pub). The

following table gives an overview of hearing-aid manufactures that offer Al or machine learning

capabilities:

Table 1: Technology overview about Al integration in current hearing aids.
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Other technologies exist for sound enhancement that try to replace traditional algorithms for hearing
aids, such as beamforming and noise reduction. These are based on simplistic situational and
acoustical assumptions, such as, received speech from a frontal direction with static environmental
background noise. The manufacturer, Oticon, has developed a data-driven approach to a DNN-
based on daily life listening environments that has learned to distinguish which acoustical
information belongs to the foreground and that which belongs to the background and can be
reduced (Santurette & Behrens, 2020; Brendgaard & Loong, 2020). The sound scene is then



cleaned in a way to help the users to make better sense of their environment that is often perceived
as blurred. Together with spatial balancing of the analyzed environment while maintaining binaural
cues, this approach offers great potential towards solving remaining issues in the perception of
sound environments that arise with conventional sound processing in hearing aids. We consider this
approach as trend-setting for more user-oriented development of hearing aid algorithms and review
the comprehensive publications of Santurette & Behrens (2020) and Braendgaard & Loong (2020)
in chapter 3. The final step towards self-determined hearing is, of course, the training of
individualized hearing aid settings based on the user's input. Such trainable hearing aids have been
around for some time (Chalupper et al., 2009) but recent developments in Al technology bring this
training to another level. Employees of Widex and WS Audiology published an article (Balling et
al., 2021) describing an Al-driven self-adjustment method via A-B comparisons. We consider this
article as especially valuable because it contains comprehensive data and analysis that provides
good insight into the user-driven application of Al in everyday life. For this reason, we place a
special focus on the review of this publication in chapter 4.

3. Al FOR SOUND ENHANCEMENT OF REAL ENVIRONMENTS

In this chapter, we discuss the MoreSound Intelligence (MSI) feature of Oticon More™
technology, as it is documented in the publications by Santurette & Behrens (2020) and Braendgaard
& Loong (2020). The MSI approach is to make hearing-aid technology open up to all meaningful
sounds, not only speech-like sounds, to create a clear and naturally perceived sound contrast
between the important elements in the scene and the background. That is to be achieved by letting
the meaningful sounds (such as speech, music, and important environmental sounds) stand out from
background sounds (such as babble or noise), while preserving access to all sound sources and all
directions that have distinct information. As all sound information is accessible to the brain, users
should be able to better focus on, understand and remember sounds of interest, as documented in
clinical research (Santurette et al., 2020). This approach is fundamentally different from the
conventional components of existing hearing aids algorithms, which can reduce the perception of
sound scenes in different ways: Directionality reduces access to sounds from the sides and the back
of the user; Noise reduction reduces access to all sounds that are not seen as speech; Compression
reduces access to important sound details that matter to the brain, and feedback management
reduces access to optimal gain in dynamic situations. The sound processing steps of the MSI
include Spatial Clarity Processing, followed by Neural Clarity processing. Additionally, a sound
enhancer provides dynamic sound details when noise suppression is activated, predominantly in
difficult sound environments. The processing step of Spatial Clarity Processing distinguishes
between difficult and easy listening environments. In easy sound environments it simulates spatial
hearing by mimicking the function of the outer ear, called the Virtual Outer Ear (VOE). For the
VOE, three pinnae shapes are available, which are selected according to the shape of the individual
user’s pinna to simulate the user's usual spatial hearing. In difficult listening environments, the
processing of the spatial hearing is taken on by a spatial balancer, supplied with an omnidirectional
microphones signal and a beamformer-based on Minimum-Variance Distortionless Response
(MVDR). The next MSI processing step, the Neural Clarity Processing, balances the sound scene
by a DNN that mimics how a human brain works. Being trained on millions of real life sound
scenes the DNN has learned which elements of real sound scenes carry more information and which
don’t, and what a balanced relationship between these elements should comprise "average user in



average listening environment" standards. The result is a more detailed contrast between the
meaningful sounds and the background (Santurette and Behrens 2020, pp. 4).

3.1 DISCUSSION ON MORESOUND INTELLIGENCE (MSI)

The MSI technology represents a big step forward towards more integration of user perception in
hearing aid development. The processing chain of MSI distinguishes between easy and difficult
listening environments, for which two different processing steps are provided. With future
development in Al, perhaps a binary distinction will no longer be necessary, but rather that the
different approaches can be interpolated. It could be interesting to observe and analyze how
different user-specific listening situations and intentions affect perceptual needs. Al could be used
in the analysis, as well as, in the application of appropriate adjustments. It is conceivable that future
Al developments will allow even more customization, for example, by scanning the individual
pinna of the user and determining the DI.

4. AI FOR SOUND INDIVIDUALIZATION

Balling et al. (2021) present an Al approach to sound individualization driving the Sound Sense
Learn (SSL) technology. This technology enables hearing aid wearers to adjust the sound in
challenging everyday listening situations. For this, Al optimizing A-B comparisons are used, users
iteratively choose between two sound settings, and indicate how much one sample is preferred
above the other. The stimuli are sampled from the best clusters for the activity that the user has
indicated. A-B samples are presented and selected consecutively, until the user has found the
preferred balance. The integrated Bayesian optimization takes on the task of optimizing the
following proposed sound setting in the iterative sound selection process, such that only a few
selection steps are necessary. The individualization of the sound adjustment is driven forward
particularly by an active learning approach entailed by the machine learning model continuously
updating based on user input (see figure 1).

The Bayesian model used here processes the knowledge on previous A-B comparisons to select the
next A-B samples. The Bayesian Gaussian process (GP) assumes the user's preferences for sound as
an internal preference function that is approximated by evaluating the data from the A-B
comparisons. An Expected Improvement (EI) measures the amount of improvement per A-B
comparison that can potentially yield to the maximal value of the function. After each response
from the user, the Bayesian Gaussian process (GP) model is updated, and the EI criterion is
evaluated to find a new A-B comparison that will yield to the optimal setting for the user.
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Figure 1: The actor (hearing aid user) in a daily life sound scene gets an optimized setting via
selection of A-B sound samples comparisons. More than 2000 settings are possible, but the
Bayesian optimization reduces this to an amount of maximum 24 sound sample comparisons.

Via data exchange on a cloud server, the clinician can observe the personal programs that the user
has created, what settings were established and how much each program has been used. If there are
systematic trends, it is the clinician’s responsibility to implement a more universal adjustment of the
gain.

Three laboratory studies yielded promising results. One laboratory study showed that 8 out of 10
participants achieved satisfactory sound adjustments after using SSL. The results of two additional
laboratory studies (no number of participants given) showed that personalized program settings for
basic audio quality were significantly preferred to the baseline setting. The preference of listening
comfort and speech clarity were also considered, but in the results, participants did not show
significant preference in comparison to baseline settings (Balling et al. 2021, pp 286). In a daily live
survey, 118 experienced hearing aid users rated their satisfaction with different aspects of use. 53 of
the participants indicated that they had used SSL (Balling et al. 2021, pp 286). It is assumed that
everyone felt the need to adjust their hearing aids, which would be due to their assumptions of
providing a well-fitted hearing aid. As part of the daily live survey, data was collected and stored on
a cloud computer the following data were stored and analyzed: The settings and amount of use of
the created programs, the activities and intentions indicated by users when SSL was used, and the
settings compared and the associated degree of preference. For the analysis of individual
preferences in individual listening environments 20.000 user selected programs for gain settings of
bass, middle and treble frequencies were stored. The settings were almost evenly distributed across
all selectable settings as can be seen in figure 2.

Figure 2: This schematic graphic (based on Balling et al, 2021, page 288) visualizes the
distribution of individual preferences in individual listening environments of 20.000 users.

As part of the data collection, users also indicated the activities in which they made a sound
adjustment with SSL. 31.772 activities and the associated user-selected sound adjustment programs
were analyzed. The activity “watching TV” was the overwhelmingly most frequent activity
indicated by users. Second was the activity “socializing”, competing with “speech”. Besides the
most common intentions of conversation and suppressing disturbances, another major type of
intention was enjoying sound and music. According to Balling et al. (2021), TV is likely to be a



relatively easy situation to create SSL programs for, in contrast to a one-to-one conversation, where
it’s likely to be more difficult to systematically complete the process of A-B comparisons.

Users could also rate the degree of preference for their chosen program after A-B comparisons.
10,000 adjustment setting programs for daily life were chosen and acoustical and user inputs were
analyzed using machine learning. The result of these analyses was a defined number of clusters for
each activity. For example, while there was a single cluster for transport, i.e., generally turning
down the volume, the programs for watching TV were distributed over more clusters, indicating
diverse preferences (see figure 3).
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Figure 3: These schematic graphics (based on Balling et al., 2021, page 291) give an impression of
the significant characteristics of the cluster distribution as an example for the sound scenes
transport and TV. For transport only one cluster occurred: the general turning down volume. For
watching TV the programs were distributed over more clusters.

4.1 DISCUSSION ON SOUND SENSE LEARN (SSL)

The paper indicates that there is a wide range of individual preferences within individual
listening environments, rather than generalized group preferences. There are obviously no default
settings that can be generalized, which raises the question of whether or not basic settings should be
fundamentally reconsidered as a static average function, like current prescriptive rules. Al could
play an important role in such considerations and optimize the fine-tuning to individual
environments using machine learning models capable of generating individual baseline settings
automatically. The cluster distribution for the sound scenes transport shows that transport sounds
are perceived as noise. This is a case where a personalized program is clearly preferred over a
default setting: the personalized, Al-assisted program could potentially replace the general default
hearing aid setting. Since SSL can only be used in situations with sufficient time, this could indicate
that the data collected via cloud was biased in terms of the prevalence of activities in which users
needed sound adjustments. That means it is conceivable that there were difficult sound scenes
where the need for sound adjustments existed, but was not carried out due to insufficient time.

It is also mentioned that a satisfactory result was often achieved in less than the maximum 24 A-B
selection steps, because convergence is already achieved. The findings could also be situation-
related, since the selection process requires a high level of concentration from the user. This makes
it clear how much an efficient user-driven Al is importantly intertwined with a user-friendly process
for sound adjustment. In the SSL application discussed here, Al is used to optimize the fitting
process at A-B iterations and allows users to spontaneously adjust the sound in everyday situations.
From the scientific perspective the results provide a detailed insight into individual hearing
preferences due to the ability to calibrate nuanced sound settings. However, the adjustment process



requires a lot of attention and can only be carried out in an iterative process, which means that
everyday use is only possible to a limited extent. Studies have shown a good test-retest reliability
for user settings derived in a production task setting sound and loudness directly (GoBwein et al.,
2022; Nelson et al., 2018; Rennies et al., 2016). The authors state that in some cases users may not
be able to understand the adjustment controls, and the need for something they cannot change might
lead to an unsuccessful trial and error process. The authors do not show evidence if these users who
have difficulties to adjust sound and loudness directly achieve better results by adjusting sounds via
A-B comparison. It remains unclear if the A-B comparison task is a viable process to create better
fits in everyday life for a given user than setting sound and loudness directly. A possible solution to
this dilemma between precision and simplicity a could be a self-fitting setting e.g. as described by
GoBwein et al. 2022, followed by an A-B comparison task on demand, which could combine the
best of both worlds: quick changes in conversations and comparison tasks for higher precision. In
this way, individual sound adjustments could also be made possible for listening situations in which
users need quick sound adjustments. The authors think that assumptions about user motivation
based solely on the technical data collected may not be correct. For example, 53 of 118 participants
did not use SSL and it is assumed that the hearing aid is already well-fitted. Another example is,
that Balling et al. (2021) assume user satisfaction if more than a third of users do not use SSL or
fewer than 24 A-B comparisons have been carried out. With the help of subjective user feedback,
these assumptions could be validated.

5. CONCLUSIONS

There are many ways of integrating Al into hearing aids, providing more sound control and
additional features to the user. Most applications focus on speech intelligibility, but other
approaches emphasize a balanced audio scene. Self-adjustments allow user-driven sound adaptation
in challenging hearing situations. Using Al, hearing aid users are given the opportunity to select
preset programs for more speech intelligibility or to create individual user-specific programs for
challenging hearing situations. All these applications are promising and show the potential of Al for
hearing aids. Even though the Al applications address individual needs, the data analyses still
focuses on the average or the usual hearing loss. A next step for more individualization for the
benefit of the user’s satisfaction could be that Al helps to individualize the sound adjustment
process in a way that it is easier and quicker to use, sound adjustments can be done in fine
gradations and in bigger ranges so that basic settings could also be affected. The individualization
of sound adjustments for user-specific listening environments, driven by self-fitting in combination
with Al will be groundbreaking for future developments for self-determined hearing with hearing
aids.
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